Элементы квантовой механики Корпускулярно-волновой дуализм свойств частиц вещества. Элементы квантовой механики. Корпускулярно-волновой дуализм свойств частиц вещества. Волны де Бройля и их свойства. Соотношение неопределенностей Гейзенберга Уравнение л д

Страница 1

Химические процессы сводятся к превращению молекул, т.е. к возникновению и разрушению связей между атомами. Поэтому важнейшей проблемой химии всегда была и остается проблема химического взаимодействия, тесно связанная со строением и свойствами вещества. Современная научная трактовка вопросов химического строения и природы химической связи дается квантовой

механикой

– теорией движения и взаимодействия микрочастиц (электронов, ядер и т.д.).

Одним из общих свойств материи является ее двойственность. Частицы материи обладают одновременно и корпускулярными и волновыми свойствами. Соотношение "волна – частица" таково, что с уменьшением массы частицы ее волновые свойства все более усиливаются, а корпускулярные – ослабевают. Когда же частица становится соизмеримой с атомом, наблюдаются типичные волновые явления. Одновременно оказывается невозможным описание движения и взаимодействия микрочастиц-волн законами движения тел с большой массой. Первый шаг в направлении создания волновой, или квантовой механики, законы которой объединяют и волновые, и корпускулярные свойства частиц, сделал де Бройлем (1924). Де Бройль высказал гипотезу, что с каждой материальной частицей связан некоторый периодический процесс. Если частица движется, то этот процесс представляется в виде распространяющейся волны, которую называют волной де Дройля

Или фазовой волной

Скорость частицы V связана с длиной волны λ соотношением де Бройля

где m – масса частицы (например, электрона);

h – постоянная Планка.

Уравнение (1) относится к свободному движению частиц. Если же частица движется в силовом поле, то связанные с ней волны описываются так называемой волновой функцией

Общий вид этой функции определил Шредингер (1926). Найдем волновую функцию следующим путем. Уравнение, характеризующее напряженность поля Еа плоской монохроматической волны света, можно записать в виде:

, (2)

где Еа0 – амплитуда волны;

ν – частота колебаний;

t – время;

λ – длина волны;

х – координата в направлении распространения волны.

Так как вторые производные от уравнения плоской волны (2), взятые по времени t и координате х, равны соответственно:

, (3)

, (4)

то

Подставляя λ=с/ V (с – скорость света), получаем волновое уравнение для плоской световой волны:

, (5)

Последующие преобразования основываются на предположениях, что распространение волн де Бройля описывается аналогичным уравнением, и что эти волны становятся стационарными и сферическими. Сначала представим, что по уравнению (5) изменяется значение новой функции ψ от координат (χ, y, z), имеющей смысл амплитуды некоторого колебательного процесса. Тогда, заменяя Еа на ψ, получим волновое уравнение в форме.

В 1924г. Луи де Бройль (французский физик) пришел к выводу, что двойственность света должна быть распространена и на частицы вещества - электроны. Гипотеза де Бройля заключалась в том, что электрон, корпускулярные свойства которого (заряд, масса) изучаются давно, имеет еще и волновые свойства, т.е. при определенных условиях ведет себя как волна.

Количественные соотношения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов.

Идея де Бройля состояла в том, что это соотношение имеет универсальный характер, справедливый для любых волновых процессов. Любой частице, обладающей импульсом р, соответствует волна, длина которой вычисляется по формуле де Бройля.

- волна де Бройля

p =mv - импульс частицы, h - постоянная Планка.

Волны де Бройля , которые иногда называют электронными волнами, не являются электромагнитными.

В 1927 году Дэвиссон и Джермер (амер. физик) подтвердили гипотезу де Бройля обнаружив дифракцию электронов на кристалле никеля. Дифракционные максимумы соответствовали формуле Вульфа - Брэггов 2dsin n , а брэгговская длина волны оказалась в точности равной .

Дальнейшее подтверждение гипотезы де Бройля в опытах Л.С. Тартаковского и Г. Томсона, наблюдавших дифракционную картину при прохождении пучка быстрых электронов (Е  50 кэВ) через фольгу из различных металлов. Затем была обнаружена дифракция нейтронов, протонов, атомных пучков и молекулярных пучков. Появились новые методы исследования вещества - нейтронография и электронография и возникла электронная оптика.

Макротела также должны обладать всеми свойствами (m = 1кг, следовательно,   ·  м - невозможно обнаружить современными методами - поэтому макротела рассматриваются только как корпускулы).

§2 Свойства волн де Бройля

    Пусть частица массы m движется со скоростью v . Тогда фазовая скорость волн де Бройля

Т.к. c > v, то фазовая скорость волн де Бройля больше скорости света в вакууме (v ф может быть больше и может быть менше с, в отличие от групповой).

Групповая скорость

    следовательно, групповая скорость волн де Бройля равна скорости движения частицы.

Для фотона

т.е. групповая скорость равная скорости света.

§3 Соотношение неопределенностей Гейзенберга

Микрочастицы в одних случаях проявляют себя как волны, в других как корпускулы. К ним не применимы законы классической физики частиц и волн. В квантовой физике доказывается, что к микрочастице нельзя применять понятие траектории, но можно сказать, что частица находится в данном объеме пространства с некоторой вероятностью Р . Уменьшая объем, мы будем уменьшать вероятность обнаружить частицу в нем. Вероятностное описание траектории (или положения) частицы приводит к тому, что импульс и, следовательно, скорость частицы может быть определена с какой-то определенной точностью.

Далее, нельзя говорить о длине волны в данной точке пространства и отсюда следует, что если мы точно задаем координату Х, то мы ничего не сможем сказать о импульсе частицы, т.к. . Только рассматривая протяженный участок мы сможем определить импульс частицы. Чем больше , тем точнее р и наоборот, чем меньше , тем больше неопределенность в нахождении р .

Соотношение неопределенностей Гейзенберга устанавливает границу в одновременном определении точности канонически сопряженных величин, к которым относятся координата и импульс, энергия и время.

Соотношение неопределенностей Гейзенберга: произведение неопределенностей значений двух сопряженных величин не может быть по порядку величины меньше постоянной Планка h

(иногда записывают )

Таким образом. для микрочастицы не существует состояний, в которых её координата и импульс имели бы одновременно точные значения. Чем меньше неопределенность одной величины, тем больше неопределенность другой.

Соотношение неопределенностей является квантовым ограничением применимости классической механики к микрообъектам.

следовательно, чем больше m, тем меньше неопределенности в определении координаты и скорости. При m = 10 -12 кг, ? = 10 -6 и Δx = 1% ?, Δv = 6,62·10 -14 м/с, т.е. не будет сказываться при всех скоростях, с которыми пылинки могут двигаться, т.е. для макротел их волновые свойства не играют никакой роли.

Пусть электрон движется в атоме водорода. Допустим Δx  -10 м (порядка размеров атома, т.е. электрон принадлежит данному атому). Тогда

Δv = 7,27·  м/с. По классической механике при движении по радиусу r  ,·  м v = 2,3·10 -6 м/с. Т.е. неопределенность скорости на порядок больше величины скорости, следовательно, нельзя применять законы классической механики к микромиру.

Из соотношения следует, что система имеющая время жизниt , не может быть охарактеризована определенным значением энергии. Разброс энергии возрастает с уменьшением среднего времени жизни. Следовательно, частота излученного фотона также должна иметь неопределенность = h , т.е. спектральные линии будут иметь некоторую ширину h , будут размыты. Измерив ширину спектральной линии можно оценить порядок времени существования атома в возбужденном состоянии.

Недостатки модели Бора. Выдвинутая Бором модель атома до сих пор используется в ряде случаев. Ею можно пользоваться, интерпретируя расположение элементов в периодической таблице и закономерности изменения энергии ионизации элементов. Однако модель Бора имеет недостатки. 1. Эта модель не позволяет объяснить некоторые особенности в спектрах более тяжелых элементов, чем водород. 2. Экспериментально не подтверждается, что электроны в атомах вращаются вокруг ядра по круговым орбитам со строго определенным угловым моментом.

Двойственная природа электрона. Известно, что электромагнитное излучение способно проявлять как волновые, так и корпускулярные свойства (подобные свойствам частиц). В последнем случае оно ведет себя как поток частиц – фотонов. Энергия фотона связана с его длиной волны λ или частотой υ соотношением E = h · υ = h · c / λ (с = λ · υ),

где h – поcтоянная Планка равна 6,62517∙10 -34 Дж∙с, c – скорость света.
Луи де Бройль высказал смелое предположение, что аналогичные волновые свойства можно приписать и электрону. Он объединил уравнения Эйнштейна (E = m · c 2) и Планка (E = h · υ) в одно:

h · υ = m · c 2 h · с / λ = m · c 2 λ = h /m · c .

λ = h /m · ѵ,

где – ѵ скорость электрона. Это уравнение (уравнение де Бройля ), связывающее длину волны с его импульсом (m ѵ), и легло в основу волновой теории электронного строения атома. Де Бройль предложил рассматривать электрон как стоячую волну, которая должна умещаться на атомной орбите целое число раз, соответствующее номеру электронного уровня. Так, электрону, находящемуся на первом электронном уровне (n = 1), соответствует в атоме одна длина волны, на втором (n = 2) – две и т. д.

Двойственная природа электрона приводит к тому, что его движение не может быть описано определенной траекторией, траектория размывается, появляется «полоса неопределенности», в которой находится ē. Чем точнее мы будем стараться определить местонахождения электрона, тем менее точно будем знать о его скорости. Второй закон квантовой механики звучит так: «Невозможно одновременно с любой заданной точностью определить координаты и импульс (скорость) движущегося электрона» - это принцип неопределенности Гейзенберга. Эта вероятность оценивается уравнением Шредингера (основное уравнение квантовой механики):

H · ψ = E · ψ,

где H – оператор Гамильтона, указывающий на определенную последовательность операций с ψ – функцией. Отсюда Е = H · ψ / ψ. Уравнение имеет несколько решений. Волновая функция, являющаяся решением уравнения Шредингера, есть атомная орбиталь. В качестве модели состояния электрона в атоме принято представ­ление об электронном облаке, плотность соответствующих участков которого пропорциональна вероятности нахождения там электрона.



Несмотря на невозможность точного определения положения электрона, можно указать вероятность нахождения электрона в определенном положении в любой момент времени. Из принципа неопределенности Гейзенберга вытекают два важных следствия.

1. Движение электрона в атоме – движение без траектории. Вместо траектории в квантовой механике введено другое понятие – вероятность пребывания электрона в определенной части объема атома, которая коррелирует с электронной плотностью при рассмотрении электрона в качестве электронного облака.

2. Электрон не может упасть на ядро. Теория Бора не объяснила это явление. Квантовая механика дала объяснение и этому явлению. Увеличение степени определенности координат электрона при его падении на ядро вызвало бы резкое возрастание энергии электрона до 10 11 кДж/моль и больше. Электрон с такой энергией вместо падения на ядро должен будет покинуть атом. Отсюда следует, что усилие необходимо не для того, чтобы удержать электрон от падения на ядро, а для того, чтобы «заставить» электрон находиться в пределах атома.

Элементы квантовой механики

Корпускулярно-волновой дуализм свойств частиц вещества.

§1 Волны де Бройля

В 1924г. Луи де Бройль (французский физик) пришел к выводу, что двойственность света должна быть распространена и на частицы вещества - электроны. Гипотеза де Бройля заключалась в том, что электрон, корпускулярные свойства которого (заряд, масса) изучаются давно, имеет еще и волновые свойства, т.е. при определенных условиях ведет себя как волна.

Количественные соотношения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов.

Идея де Бройля состояла в том, что это соотношение имеет универсальный характер, справедливый для любых волновых процессов. Любой частице, обладающей импульсом р, соответствует волна, длина которой вычисляется по формуле де Бройля.

- волна де Бройля

p = mv - импульс частицы, h - постоянная Планка.

Волны де Бройля , которые иногда называют электронными волнами, не являются электромагнитными.

В 1927 году Дэвиссон и Джермер (амер. физик) подтвердили гипотезу де Бройля обнаружив дифракцию электронов на кристалле никеля. Дифракционные максимумы соответствовали формуле Вульфа - Брэггов 2 dsin j = n l , а брэгговская длина волны оказалась в точности равной .

Дальнейшее подтверждение гипотезы де Бройля в опытах Л.С. Тартаковского и Г. Томсона, наблюдавших дифракционную картину при прохождении пучка быстрых электронов (Е » 50 кэВ) через фольгу из различных металлов. Затем была обнаружена дифракция нейтронов, протонов, атомных пучков и молекулярных пучков. Появились новые методы исследования вещества - нейтронография и электронография и возникла электронная оптика.

Макротела также должны обладать всеми свойствами (m = 1кг, следовательно, l = 6 . 6 2 · 1 0 - 3 1 м - невозможно обнаружить современными методами - поэтому макротела рассматриваются только как корпускулы).

§2 Свойства волн де Бройля

  • Пусть частица массы m движется со скоростью v . Тогда фазовая скорость волн де Бройля

Т.к. c > v , то фазовая скорость волн де Бройля больше скорости света в вакууме (v ф может быть больше и может быть менше с, в отличие от групповой).

Групповая скорость

  • следовательно, групповая скорость волн де Бройля равна скорости движения частицы.

Для фотона

т.е. групповая скорость равная скорости света.

§3 Соотношение неопределенностей Гейзенберга

Микрочастицы в одних случаях проявляют себя как волны, в других как корпускулы. К ним не применимы законы классической физики частиц и волн. В квантовой физике доказывается, что к микрочастице нельзя применять понятие траектории, но можно сказать, что частица находится в данном объеме пространства с некоторой вероятностью Р . Уменьшая объем, мы будем уменьшать вероятность обнаружить частицу в нем. Вероятностное описание траектории (или положения) частицы приводит к тому, что импульс и, следовательно, скорость частицы может быть определена с какой-то определенной точностью.

Далее, нельзя говорить о длине волны в данной точке пространства и отсюда следует, что если мы точно задаем координату Х, то мы ничего не сможем сказать о импульсе частицы, т.к. . Только рассматривая протяженный участок D C мы сможем определить импульс частицы. Чем больше D C , тем точнее D р и наоборот, чем меньше D C , тем больше неопределенность в нахождении D р .

Соотношение неопределенностей Гейзенберга устанавливает границу в одновременном определении точности канонически сопряженных величин, к которым относятся координата и импульс, энергия и время.

Соотношение неопределенностей Гейзенберга: произведение неопределенностей значений двух сопряженных величин не может быть по порядку величины меньше постоянной Планка h

(иногда записывают )

Таким образом. для микрочастицы не существует состояний, в которых её координата и импульс имели бы одновременно точные значения. Чем меньше неопределенность одной величины, тем больше неопределенность другой.

Соотношение неопределенностей является квантовым ограничением применимости классической механики к микрообъектам.

следовательно, чем больше m , тем меньше неопределенности в определении координаты и скорости. При m = 10 -12 кг , ? = 10 -6 и Δ x = 1% ?, Δv = 6,62·10 -14 м/с, т.е. не будет сказываться при всех скоростях, с которыми пылинки могут двигаться, т.е. для макротел их волновые свойства не играют никакой роли.

Пусть электрон движется в атоме водорода. Допустим Δ x » 1 0 -10 м (порядка размеров атома, т.е. электрон принадлежит данному атому). Тогда

Δv = 7,27· 1 0 6 м/с. По классической механике при движении по радиусу r » 0 , 5 · 1 0 - 1 0 м v = 2,3·10 -6 м/с. Т.е. неопределенность скорости на порядок больше величины скорости, следовательно, нельзя применять законы классической механики к микромиру.

Из соотношения следует, что система имеющая время жизни D t , не может быть охарактеризована определенным значением энергии. Разброс энергии возрастает с уменьшением среднего времени жизни. Следовательно, частота излученного фотона также должна иметь неопределенность D n = D E / h , т.е. спектральные линии будут иметь некоторую ширину n ± D E / h , будут размыты. Измерив ширину спектральной линии можно оценить порядок времени существования атома в возбужденном состоянии.

§4 Волновая функция и ее физический смысл

Дифракционная картина, наблюдающаяся для микрочастиц, характеризуется неодинаковым распределением потоков микрочастиц в различных направлениях - имеются минимумы и максимумы в других направлениях. Наличие максимумов в дифракционной картине означает, что в этих направлениях распределяются волны де Бройля с наибольшей интенсивностью. А интенсивность будет максимальной, если в этом направлении распространяется максимальное число частиц. Т.е. дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности в распределении частиц: где интенсивность волны де Бройля максимальная, там и частиц больше.

Волны де Бройля в квантовой механике рассматриваются как волны вероятности, т.е. вероятность обнаружить частицу в различных точках пространства меняется по волновому закону (т.е. ~ е - iωt ). Но для некоторых точек пространства такая вероятность будет отрицательной (т.е. частица не попадает в эту область). М. Борн (немецкий физик) предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, которую также называют волновой функцией или y -функцией (пси - функцией).

Волновая функция - функция координат и времени.

Квадрат модуля пси-функции определяет вероятность того, что частица будет обнаружена в пределах объема dV - физический смысл имеет не сама пси-функция, а квадрат ее модуля.

Ψ * - функция комплексно сопряженная с Ψ

(z = a + ib , z * = a - ib , z * - комплексно сопряженное)

Если частица находится в конечном объеме V , то возможность обнаружить ее в этом объеме равна 1, (достоверное событие)

Р = 1 Þ

В квантовой механике принимается, что Ψ и АΨ, где А = const , описывают одно и то же состояние частицы. Следовательно,

Условие нормировки

интеграл по , означает, что он вычисляется по безграничному объему (пронстранству).

y - функция должна быть

1) конечной (так как Р не может быть больше1),

2) однозначной (нельзя обнаружить частицу при неизменных условиях с вероятностью допустим 0,01 и 0,9, так как вероятность должна быть однозначной).

  • непрерывной (следует из неприрывности пространства. Всегда имеется вероятность обнаружить частицу в разных точках пространства, но для разных точек она будет разная),
  • Волновая функция удовлетворяет принципу суперпозиции : если система может находится в различных состояниях, описываемых волновыми функциями y 1 , y 2 ... y n , то она может находится в состоянии y , описываемой линейной комбинаций этих функций:

С n (n =1,2...) - любые числа.

С помощью волновой функции вычисляются средние значения любой физической величины частицы

§5 Уравнение Шредингера

Уравнение Шредингера, как и другие основные уравнения физики (уравнения Ньютона, Максвелла), не выводится, а постулируется. Его следует рассматривать как исходное основное предположение, справедливость которого доказывается тем, что все вытекающие из него следствия точно согласуются с экспериментальными данными.

(1)

Временное уравнение Шредингера.

Набла - оператор Лапласа

Потенциальная функция частицы в силовом поле,

Ψ(y , z , t ) - искомая функция

Если силовое поле, в котором движется частица, стационарно (т.е. не изменяется с течением времени), то функция U не зависит от времени и имеет смысл потенциальной энергии. В этом случае решение уравнения Шредингера (т.е. Ψ - функция) может быть представлено в виде произведения двух сомножителей - один зависит только от координат, другой - только от времени:

(2)

Е - полная энергия частицы, постоянная в случае стационарного поля.

Подставив (2) ® (1):

(3)

Уравнение Шредингера для стационарных состояний.

Имеется бесконечно много решений. Посредством наложения граничных условий отбирают решения, имеющие физический смысл.

Граничные условия:

Волновые функции должны быть регулярными , т.е.

1)конечными;

2) однозначными;

3) непрерывными.

Решения, удовлетворяющие уравнению Шредингера, называются собственными функциями, а соответствующие им значения энергии - собственными значениями энергии. Совокупность собственных значений называется спектром величины. Если Е n принимает дискретные значения, то спектр - дискретный , если непрерывные - сплошной или непрерывный .

§6 Движение свободной частицы

Частица называется свободной, если на нее не действуют силовые поля, т.е. U = 0.

Уравнение Шредингера для стационарных состояний в этом случае:

Его решение: Ψ(x )=А е ikx , где А = const , k = const

И собственные значения энергии:

Т.к. k может принимать любые значения, то, следовательно, и Е принимает любые значения, т.е. энергетический спектр будет сплошным.

Временная волновая функция

(- уравнение волны)

т.е. представляет плоскую монохромную волну де Бройля.

§7 Частица в “потенциальной яме” прямоугольной формы.

Квантование энергии.

Найдем собственные значения энергии и соответствующие им собственные функции для частицы, находящейся в бесконечно глубокой одномерной потенциальной яме. Предположим что, частица может двигаться только вдоль оси x . Пусть движение ограничено непроницаемыми для частицы стенками x = 0, и x = ?. Потенциальная энергия U имеет вид:

Уравнение Шредингера для стационарных состояний для одномерной задачи

За пределы потенциальной ямы частица попасть не сможет, поэтому вероятность обнаружения частицы вне ямы равна 0.Следовательно, и Ψ за пределами ямы равна 0 .Из условий непрерывности следует, что Ψ = 0 и на границах ямы т.е.

Ψ(0) = Ψ(?) = 0

В пределах ямы (0 £ x £ l ) U = 0 и уравнение Шредингера.

введя получим

Общее решение

из граничных условий следует

y (0) = 0,

Таким образом

В = 0

Следовательно,

Из граничного условия

Следует

Þ

Тогда

Энергия Е n частицы в "потенциальной яме" с бесконечно высокими стенками принимает лишь определенные дискретные значения , т.е. квантуется. Квантованные значения энергии Е n называются уровнями энергии , а число n , определяющее энергические уровни частицы, называется главным квантовым числом. Т.е. частицы в "потенциальной яме" могут находиться только на определенном энергетическом уровне Е n (или находятся в квантовом состоянии n )

Собственные функции:

А найдем из усилия нормировки



Плотность вероятности. Из рис. видно, что плотность вероятности меняется в зависимости от n : при n = 1 частица, скорее всего, будет посередине ямы, но не на краях, при n = 2 - будет или в левой или в правой половине, но не посередине ямы и не на краях, и т.д. Т.е нельзя говорить о траектории движения частицы.

Энергетический интервал между соседними уровнями энергии:

При n = 1 имеет наименьшую энергию отличную от нуля

Наличие минимума энергии следует из соотношения неопределенностей, т.к.,

C ростом n расстояние между уровнями уменьшается и при n ® ¥ Е n практически непрерывны, т.е. дискретность сглаживается, т.е. выполняется принцип соответствия Бора: при больших значениях квантовых чисел законы квантовой механики переходят в законы классической физики.

Список литературы :

    Синкевич О.А., Стаханов И.Р.; Физика плазмы; издательство МЭИ, 1991 г

    Синкевич О.А.; Волны и неустойчивости в сплошных сред; издательство МЭИ, 2016 г

    Синкевич О.А.; Акустические волны плазме твердого тела; издательство МЭИ, 2007 г

    Аретемов В.И., Левитан Ю.С., Синкевич О.А.; Неустойчивость и турбулентность в низкотемпературной плазме; издательство МЭИ, 1994/2008

    Райдер Ю.П.; Физика газового разряда 1992/2010

    Иванов А.А. Физика сильнонеравновесной плазмы 1977

Плазма – среда состоящие из нейтральных частиц (молекулы, атомы, ионы и электроны) в котором внешнее взаимодействие электромагнитного поля является главным.

Примеры плазмы: Солнце, электричество (молнии), Северное сеяние, сварка, лазеры.

Плазма бывает

    Газовой (9 семестр). Плотность может варьироваться от 10 4 до 10 27 кг/м 3 , температуры от 10 5 до 10 7 К

    Твердой (10 семестр).

Плазма по агрегатному состоянию бывает

    Частичной . Это когда имеется смесь частиц которая часть из них ионизированная.

    Полной Это когда все частицы ионизированные.

Способ получение плазмы на примере кислорода. Начинаем с температуры 0 К начиная нагревать, в начальном состоянии будет твердой, после достижение некоторого значение жидкой, а далее и газообразной. Начиная с некоторой температуры происходит диссипация и молекула кислорода разделяется на атомы кислорода. Если продолжать нагревать кинетической энергии у электронов будет достаточной чтобы покинуть атом и таким образом атом превратиться в ионн (частичная плазма).Если продолжать нагревать, то атомов просто не останется (полная плазма)

Физика плазмы основывается на следующих наук:

    Термодинамика

    Электродинамика

    Механика движение заряженных тел

    1. Классическую (ур. Ньютона)

      1. Неревителийскую (U<

        Ревителийскую

    2. Квантовую

      Кинетическая теория (ур. Больцмана)

Классическая механика во внешних электромагнитных полей

Рассмотрим случай, когда B=0.

Рассмотрим случай, когда E=0, U=(Ux,0,0); B=(0,0,Bz)

Рассмотрим случай, когда Е=(0,Еу,0) и В=(0,0,Вz). Пусть решение неоднородного уравнение имеет вид

Классическая механика во внешних электромагнитных полей с силой расталкиванием

Эффект Холла – ток течет не вектору электрического поля при наличии магнитного поля и столкновение частиц.

Электродинамика

Задача: имеется некоторая частица с зарядом (q ), определить E (r ). Примем следующие допущение: данная задача стационарная, нет токов так как частица 1 и не движется. Так как rot(B) и div(B) равны 0, то вектор B=0. Можно предположить, в данная задача будет имеет сферическую симметрию, а это означает что можно использовать теорему Остроградского-Гаусса.

Электромагнитное поле в плазме

Задача: имеется частица зарядом (q ), окруженная нейтральной плазмой . Допущение с предыдущей задачей не изменились, что означает B=0. Так как плазма нейтральная концентрация отрицательных зарядов и положительных будет одинаковой.

Плазменные колебания

Рассмотрим следующую задачу. Имеется 2 заряда протон и электрон. Так как масса протона много больше массы электрона, протон будет не подвижный. Неведомым способом отодвинем электрон на малое расстояние от состояния равновесия и отпустим его, получим следующее уравнение.

Уравнение электромагнитной волны

Рассмотрим следующее, токов нету, плотность заряда нету, тогда

Если поставить данное решение в уравнение электромагнитной волны, получится следующее

Уравнение электромагнитной волны с током (в плазме)

По сути не чем не отличается от прошлой задачи

Пускай решение данного уравнение имеет следующий вид, тогда

Если то электромагнитное волна проникает сквозь плазму, если нет то отражается и поглощается.

Термодинамика плазмы

Термодинамическая система – это такая система у которой нету обмена с внешней средой таких как энергии, импульса и информации.

Обычно определение термодинамических потенциалов определяют следующим образом

Если использовать приближение идеального газа для плазмы

Предположим что, все заряды это электроны, и расстояние между ними очень мало, тогда

В области слабой неотделанности можно построить наподобие вириального уравнения

В зоне квантовой внутренние энергия это внутренние энергия Фарадея

В зоне сильно неиделаьной плазмы проводимость веществ может резко меняться, что вещество становиться диэлектриком и проводником.

Расчет состава плазмы

Основной принцип данного расчета взят для нахождения концентраций химических элементов. Если данная система находится в равновесии при определенном температуре и давлении, то производная энергии Гиббса по количеству вещества равна 0.

Бывают различные ионизации: поглощение кванта, столкновение с возбужденным атомом, термическая и др. (рассматривается именно термическая дальше). Для нее получается следующая система уравнений.

Основная проблема заключается в том, что непонятно как зависит химический потенциал от концентрации для этого необходимо обратиться к квантовой физики.

По неведомым причинам это уравнение эквивалентная этому, в котором концентрация в свободной энергии перевернута. Так как тепловая длинная Де Бройля для атома и для иона является практически одинаковой, то они сокращаются. 2 возникает так как у электрона имеется 1 уровень энергии, а это его вес.

Если решить систему уравнений, то концентрация ионов определяется следующей формулой

Методика выше расписана для идеального ионизации, посмотрим, что измениться в случаи не идеальности.

Так как для, атома данная не идеальность равна 0, для иона и электрона они равны, больше никаких изменений не происходит, тогда уравнение Саха выглядит следующим образом.

Условия возникновение двух температурной плазмы

Речь пройдет, что в самой плазме среднее тепловая энергия очень сильно расходится для электронов по сравнению с атомами и ионами. А именно получается что температура для электронов достигается 10000 К, когда для атомов и ионов всего лишь 300 К.

Рассмотрим простой случай электрон в постоянном электрическом поле вызывающей термоэмисию электронов, тогда его скорость можно определить следующим образом

Рассмотрим похожее задачку, электрон соударяется с атомами, тогда получаемая мощность можно выразить

Кинетическая теория плазмы в процессе переноса

Данная теория построена для того чтобы в случаи не сплошной среды решить задачу правильно, при это в данной теории возможен переход.

Основа этой теории заложена в определении функции распределение частиц в некотором объеме с некоторой скорости в некоторый момент времени. (данная функция рассматривалась в ТТСВ, так что тут будет какой то повтор + данные письмена на столько зашифрованы что даже я не могу их восстановить).

Далее будет рассмотрена задача взаимодействия 2 частиц как-то двигающихся в пространстве. Данная задача преобразуется в более простую заменяя, что одна частица имеет относительную массу с относительной скорости, двигающаяся в некоторое поле в взаимодействия, которой не подвижной. Цель данной задачи насколько отклониться частица от своего первоначального движение. Наименьшее расстояние частицы до центра взаимодействия называют прицельным параметром.

Рассмотрим функцию в термодинамическом равновесии, тогда

А получаемая функция распределения является Максвелла

Проблема заключается в том, что в такой функции нельзя определить теплопроводность и вязкость.

Перейдем не посредственно к плазме. Пускай изучаемый процесс является стационарным, а сила F=qE, и атомы и ионы соответствуют распределению Максвелла.

При проверке порядков было определенно, что , что позволяет нам выкинуть малый член. Пускай искомая функция определяется следящим образом