Лекция линии на плоскости и их уравнения. Какое уравнение называется уравнением данной линии? Приведите пример Связь между декартовыми и полярными координатами точки

Уравнением линии на плоскости XOY называется уравнение, которому удовлетворяют координаты x и y каждой точки этой линии и не удовлетворяют координаты любой точки, не лежащей на этой линии. В общем случае уравнение линии может быть записано в виде 0), (yx. F или)(xfy

Пусть задана прямая, пересекающая ось у в точке В (0, в) и образующая с осью х угол α Выберем на прямой произвольную точку М(х, у).

x y M N

Координаты точки N (x , в). Из треугольника BMN: k – угловой коэффициент прямой. k x by NB MN tg bkxy

Рассмотрим частные случаи: — уравнение прямой, проходящей через начало координат. 10 bkxy 2 bytg 00 — уравнение прямой, параллельной оси х.

т. е. у вертикальной прямой нет углового коэффициента. 3 22 tg — не существует Уравнение прямой, параллельной оси у, в этом случае имеет вид ax где а – отрезок, отсекаемый прямой на оси х.

Пусть задана прямая, проходящая через заданную точку2 и образующая с осью х угол α), (111 yx. M

Т. к. точка М 1 лежит на прямой, ее координаты должны удовлетворять уравнению (1): Вычитаем это уравнение из уравнения (1): bkxy 11)(11 xxkyy

Если в этом уравнении угловой коэффициент не определен, то оно задает пучок прямых, проходящих через данную точку, кроме прямой, параллельной оси у, не имеющей углового коэффициента. xy

Пусть задана прямая, проходящая через две точки: Запишем уравнение пучка прямых, проходящих через точку М 1:), (111 yx. M), (222 yx. M)(11 xxkyy

Т. к. точка М 2 лежит на данной прямой, подставим ее координаты в уравнение пучка прямых:)(1212 xxkyy 12 12 xx yy k Подставляем k в уравнение пучка прямых. Тем самым мы выделяем из этого пучка прямую, проходящую через две данные точки:

1 12 12 1 xx xx yy yy или 12 1 xx xx yy yy

РЕШЕНИЕ. Подставляем координаты точек в уравнение прямой, проходящей через две точки. 53 5 42 4 xy)5(8 6 4 xy 4 1 4 3 xy

Пусть задана прямая, отсекающая на осях координат отрезки, равные а и в. Это значит, что она проходит через точки)0, (a. A), 0(b. B Найдем уравнение этой прямой.

xy 0 ab

Подставим координаты точек А и В в уравнение прямой, проходящей через две точки (3): a ax b y 00 0 a ax b y 1 ax b y 1 b y a x

ПРИМЕР. Составить уравнение прямой, проходящей через точку А(2, -1) если она отсекает от положительной полуоси у отрезок, вдвое больший, чем на положительной полуоси х.

РЕШЕНИЕ. По условию задачи, ab 2 Подставляем в уравнение (4): 1 2 a y a x Точка А(2, -1) лежит на этой прямой, следовательно ее координаты удовлетворяют этому уравнению: 1 2 12 aa 1 2 41 a 23 a 1 35. 1 yx

Рассмотрим уравнение: Рассмотрим частные случаи этого уравнения и покажем, что при любых значениях коэффициентов А, В (не равных нулю одновременно) и С, это уравнение есть уравнение прямой на плоскости. 0 CBy. Ax

Тогда уравнение (5) можно представить в виде: Тогда получаем уравнение (1): Обозначим: 10 B B C x B A y k B A b B C bkxy

Тогда уравнение имеет вид: Получаем уравнение: — уравнение прямой, проходящей через начало координат. 2000 CAB x B A y 3 000 CAB BC y — уравнение прямой, параллельной оси х.

Тогда уравнение имеет вид: Получаем уравнение: — уравнение оси х. 40 y 5 000 CAB — уравнение прямой, параллельной оси у. 000 CAB A C x

Тогда уравнение имеет вид: — уравнение оси у. 60 x 000 CAB Таким образом, при любых значениях коэффициентов А, В (не равных нулю одновременно) и С, уравнение (5) есть уравнение прямой на плоскости. Это

Прямая на плоскости и в пространстве.

Изучение свойств геометрических фигур с помощью алгебры носит название аналитической геометрии , а использовать при этом мы будем так называемый метод координат .

Линия на плоскости обычно задается как множество точек, которые обладают присущими только им свойствами. Тот факт, что координаты (числа) х и у точки, лежащей на этой линии, аналитически записываются в виде некоторого уравнения.

Опр.1Уравнением линии (уравнением кривой) на плоскости Оху называется уравнение (*), которому удовлетворяют координаты х и у каждой точки данной линии и не удовлетворяют координаты любой другой точки, не лежащей на этой линии.

Из определения 1 следует, что всякой линии на плоскости соответствует некоторое уравнение между текущими координатами (х,у ) точки этой линии и наоборот, всякому уравнению соответствует, вообще говоря, некоторая линия.

Отсюда возникают две основные задачи аналитической геометрии на плоскости.

1.Дана линия в виде множества точек. Нужно составить уравнение этой линии.

2. Дано уравнение линии. Необходимо изучить ее геометрические свойства (форму и расположение).

Пример . Лежат ли точки А (-2;1) и В (1;1) на линии 2х +у +3=0?

Задача о нахождении точек пересечения двух линий, заданных уравнениями и, сводится к отысканию координат, которые удовлетворяют уравнению обеих линий, т.е. к решению системы из двух уравнений с двумя неизвестными.

Если эта система не имеет действительных решений, то линии не пересекаются.

Аналогично вводится понятие линии в ПСК.

Линию на плоскости можно задать двумя уравнениями

где х и у – произвольные координаты точки М(х;у), лежащей на данной линии, а t - переменная, называемая параметром , параметр определяет положение точки на плоскости.

Например, если , то значению параметра t=2 соответствует на плоскости точка (3;4).

Если параметр изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способом задания линии называется параметрическим, а уравнение (5.1) –параметрическим уравнением линии.

Чтобы перейти от параметрических уравнений к общему уравнению (*), надо каким – либо способом из двух уравнений исключают параметр. Однако, заметим, такой переход не всегда целесообразен и не всегда возможен.

Линию на плоскости можно задать векторным уравнением , где t- скалярный переменный параметр. Каждому значению параметра соответствует определенный вектор плоскости. При изменении параметра конец вектора опишет некоторую линию.

Векторному уравнению в ДСК соответствуетдва скалярных уравнения

(5.1), т.е. уравнения проекций на оси координат векторного уравнения линии есть ее



параметрическое уравнения.

Векторное уравнение и параметрические уравнения линии имеют механический смысл. Если точка перемещается на плоскости, то указанные уравнения называются уравнениями движения , а линия – траектория точки, параметр t при этом есть время.

Вывод: всякой линии на плоскости соответствует уравнение вида .

ВСЯКОМУ УРАВНЕНИЮ ВИДАсоответствует в общем случае некоторая линия, свойства которой определяются данным уравнением (исключение – уравнению на плоскости не соответствует никакой геометрический образ).

Пусть выбрана система координат на плоскости.

Опр. 5.1. Уравнением линии называется такое уравнение вида F(x;y) =0, которому удовлетворяют координаты каждой точки, лежащей на этой линии, и не удовлетворяют координаты ни одной точки, не лежащей на ней.

Уравнение вида F(x;y )=0 – называют общим уравнением линии или уравнением в неявной форме.

Таким образом, линия Г есть геометрическое место точек, удовлетворяющее данному уравнению Г={(x, y): F(x;y)=0}.

Линию называют также кривой.

Пусть на плоскости  задана декартова прямоугольная система координат Оху и некоторая линия L.

Определение . Уравнение F(x;y)=0 (1) называется уравнением линии L (относительно заданной системы координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии L, и не удовлетворяют координаты х и у ни одной точки, не лежащей на линии L.

Т.о. линией на плоскости называется геометрическое место точек {M(x;y)}, координаты которых удовлетворяют уравнению (1).

Уравнение (1) определяет линию L.

Пример. Уравнение окружности.

Окружность – множество точек, равноудаленных от заданной точки М 0 (х 0 ,у 0).

Точка М 0 (х 0 ,у 0) – центр окружности .

Для любой точки М(х;у), лежащей на окружности, расстояние ММ 0 =R (R=const)

ММ 0 ==R

(х-х 0 ) 2 +(у-у 0 ) 2 =R 2 –(2) уравнение окружности радиуса R с центром в точке М 0 (х 0 ,у 0).

Параметрическое уравнение линии.

Пусть координаты х и у точек линии L выражаются при помощи параметра t:

(3) – параметрическое уравнение линии в ДСК

где функции (t) и (t) непрерывны по параметру t (в некоторой области изменения этого параметра).

Исключая из уравнения (3) параметр t, получим уравнение (1).

Рассмотрим линию L как путь, пройденный материальной точкой, непрерывно движущейся по определенному закону. Пусть переменная t представляет собой время, отсчитываемое от некоторого начального момента. Тогда задание закона движения представляет собой задание координат х и у движущейся точки как некоторых непрерывных функций х=(t) и у=(t) времени t.

Пример . Выведем параметрическое уравнение окружности радиуса r>0 с центром в начале координат. Пусть М(х,у) – произвольная точка этой окружности, а t – угол между радиус-вектором и осью Ох, отсчитываемый против часовой стрелки.

Тогда x=r cos x y=r sin t. (4)

Уравнения (4) представляют собой параметрические уравнения рассматриваемой окружности. Параметр t может принимать любые значения, но для того, чтобы точка М(х,у) один раз обошла окружность, область изменения параметра ограничивается полусегментом 0t2.

Возведя в квадрат и сложив уравнения (4), получим общее уравнение окружности (2).

2. Полярная система координат (пск).

Выберем на плоскости ось L (полярная ось ) и определим точку этой оси О (полюс ). Любая точка плоскости однозначно задается полярными координатами ρ и φ, где

ρ – полярный радиус , равный расстоянию от точки М до полюса О (ρ≥0);

φ –угол между направлением вектора ОМ и осью L (полярный угол ). М(ρ; φ)

Уравнение линии в ПСК может быть записано:

ρ=f(φ) (5) явное уравнение линии в ПСК

F=(ρ; φ) (6) неявное уравнение линии в ПСК

Связь между декартовыми и полярными координатами точки.

(х;у) (ρ; φ) Из треугольника ОМА:

tg φ=(восстановление угла φ по известному тангенсу производится с учетом того, в каком квадранте находится точка М).(ρ; φ)(х;у). х=ρcos φ, y= ρsin φ

Пример . Найти полярные координаты точек М(3;4) и Р(1;-1).

Для М:=5, φ=arctg (4/3). Для Р: ρ=; φ=Π+arctg(-1)=3Π/4.

Классификация плоских линий.

Определение 1. Линия называется алгебраической, если в некоторой декартовой прямоугольной системе координат, если она определяется уравнением F(x;y)=0 (1), в котором функция F(x;y) представляет собой алгебраический многочлен.

Определение 2. Всякая не алгебраическая линия называется трансцендентной .

Определение 3 . Алгебраическая линия называется линией порядка n , если в некоторой декартовой прямоугольной системе координат эта линия определяется уравнением (1), в котором функция F(x;y) представляет собой алгебраический многочлен n-й степени.

Т.о., линией n-го порядка называется линия, определяемая в некоторой декартовой прямоугольной системе алгебраическим уравнением степени n с двумя неизвестными.

Установлению корректности определений 1,2,3 способствует следующая теорема.

Теорема (док-во на с.107). Если линия в некоторой декартовой прямоугольной системе координат определяется алгебраическим уравнением степени n, то эта линия и в любой другой декартовой прямоугольной системе координат определяется алгебраическим уравнением той же степени n.

Решение уравнения

Иллюстрация графического метода нахождения корней уравнения

Решение уравнения - задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут быть наложены дополнительные условия (целочисленности, вещественности и т. д.).

При подстановке другого корня получается неправильное утверждение:

.

Таким образом, второй корень нужно отбросить, как посторонний.

Виды уравнений

Различают алгебраические , параметрические , трансцендентные , функциональные , дифференциальные и другие виды уравнений.

Некоторые классы уравнений имеют аналитические решения, которые удобны тем, что не только дают точное значение корня, а позволяют записать решение в виде формулы, в которую могут входить параметры. Аналитические выражения позволяют не только вычислить корни, а провести анализ их существования и их количества в зависимости от значений параметров, что часто бывает даже важнее для практического применения, чем конкретные значения корней.

К уравнениям, для которых известны аналитические решения, относятся алгебраические уравнения, не выше четвёртой степени: линейное уравнение , квадратное уравнение , кубическое уравнение и уравнение четвёртой степени . Алгебраические уравнения высших степеней в общем случае аналитического решения не имеют, хотя некоторые из них можно свести к уравнениям низших степеней.

Уравнение, в которые входят трансцендентные функции называются трансцендентными. Среди них аналитические решения известны для некоторых тригонометрических уравнений, поскольку нули тригонометрических функций хорошо известны.

В общем случае, когда аналитического решения найти не удается, применяют численные методы . Численные методы не дают точного решения, а только позволяют сузить интервал , в котором лежит корень, до определенного заранее заданного значения.

Примеры уравнений

См. также

Литература

  • Бекаревич, А. Б. Уравнения в школьном курсе математики / А. Б. Бекаревич. - М., 1968.
  • Маркушевич, Л. А. Уравнения и неравенства в заключительном повторении курса алгебры средней школы / Л. А. Маркушевич, Р. С. Черкасов. / Математика в школе. - 2004. - № 1.
  • Каплан Я. В. Рівняння. - Киев: Радянська школа, 1968.
  • Уравнение - статья из Большой советской энциклопедии
  • Уравнения // Энциклопедия Кольера. - Открытое общество. 2000.
  • Уравнение // Энциклопедия Кругосвет
  • Уравнение // Математическая энциклопедия. - М.: Советская энциклопедия. И. М. Виноградов. 1977-1985.

Ссылки

  • EqWorld - Мир математических уравнений - содержит обширную информацию о математических уравнениях и системах уравнений.

Wikimedia Foundation . 2010 .

Синонимы :

Антонимы :

  • Хаджимба, Рауль Джумкович
  • ЕС ЭВМ

Смотреть что такое "Уравнение" в других словарях:

    УРАВНЕНИЕ - (1) математическая запись задачи о разыскании таких значений аргументов (см. (2)), при которых значения двух данных (см.) равны. Аргументы, от которых зависят эти функции, называют неизвестными, а значения неизвестных, при которых значения… … Большая политехническая энциклопедия

    УРАВНЕНИЕ - УРАВНЕНИЕ, уравнения, ср. 1. Действие по гл. уравнять уравнивать и состояние по гл. уравняться уравниваться. Уравнение в правах. Уравнение времени (перевод истинного солнечного времени в среднее солнечное время, принятое в общежитии и в науке;… … Толковый словарь Ушакова

    УРАВНЕНИЕ - (equation) Требование того, чтобы математическое выражение принимало определенное значение. Например, квадратное уравнение записывается в виде: ах2+bх+с=0. Решением является такие значения х, при котором данное уравнение становится тождеством. В… … Экономический словарь

    УРАВНЕНИЕ - математическая запись задачи о разыскании значений аргументов, при которых значения двух данных функций равны. Аргументы, от которых зависят эти функции, называются неизвестными, а значения неизвестных, при которых значения функций равны,… … Большой Энциклопедический словарь

    УРАВНЕНИЕ - УРАВНЕНИЕ, два выражения, соединенные знаком равенства; в эти выражения входят одна или несколько переменных, называемых неизвестными. Решить уравнение значит найти все значения неизвестных, при которых оно обращается в тождество, или установить … Современная энциклопедия

Давайте повторим * Какое уравнение называется квадратным? * Какие уравнения называются неполными квадратными уравнениями? * Какое квадратное уравнение называется приведенным? * Что называют корнем квадратного уравнения? * Что значит решить квадратное уравнение? Какое уравнение называется квадратным? Какие уравнения называются неполными квадратными уравнениями? Какое квадратное уравнение называется приведенным? Что называют корнем квадратного уравнения? Что значит решить квадратное уравнение? Какое уравнение называется квадратным? Какие уравнения называются неполными квадратными уравнениями? Какое квадратное уравнение называется приведенным? Что называют корнем квадратного уравнения? Что значит решить квадратное уравнение?
















Алгоритм решения квадратного уравнения: 1. Опредилить каким способом рациональней решить квадратное уравнение 2. Выбрать наиболее рациональный способ решения 3. Определение количества корней квадратного уравнения 4. Нахождение корней квадратного уравнения Для лучшего запоминания заполним таблицу… Для лучшего запоминания заполним таблицу… Для лучшего запоминания заполним таблицу…






Дополнительное условие Уравнение Корни Примеры 1. в = с = 0, а 0 ах 2 = 0 х 1 = 0 2. с = 0, а 0, в 0 ах 2 + bх = 0 х 1 = 0, х 2 =-b/а 3. в = 0, а 0, в 0 ах 2 + с = 0 а) х 1,2 = ±(c/а), где с/а 0. б) если с/а 0, то решений нет 4. а 0 ах 2 + bх + с = 0 x 1,2 =(-b±D)/2 а, где D = в 2 – 4 ас, D0 5. в – четное число (в = 2k), а 0, в 0, с 0 ах 2 + 2kx + c = 0 х 1,2 =(-b±D)/а, D 1 = k 2 – ac, где k = 6. Теорема обратная теореме Виета x 2 + px + q = 0x 1 + x 2 = - p x 1 x 2 = q


II. Специальные методы 7. Метод выделения квадрата двучлена. Цель: Привести уравнение общего вида к неполному квадратному уравнению. Замечание: метод применим для любых квадратных уравнений, но не всегда удобен в использовании. Используется для доказательства формулы корней квадратного уравнения. Пример: решите уравнение х 2 -6 х+8=0 8. Метод «переброски» старшего коэффициента. Корни квадратных уравнений ax 2 + bx + c = 0 и y 2 +by+ac=0 связаны соотношениями: и Замечание: метод хорош для квадратных уравнений с «удобными» коэффициентами. В некоторых случаях позволяет решить квадратное уравнение устно. Пример: решите уравнение 2 х 2 -9 х-5=0 На основании теорем:Пример: решите уравнение 157 х х-177=0 9. Если в квадратном уравнении a+b+c=0, то один из корней равен 1, а второй по теореме Виета равен с /а 10. Если в квадратном уравнении a+c=b, то один из корней равен -1, а второй по теореме Виета равен –с/а Пример: решите уравнение 203 х х+17=0 х 1 =у 1 /а, х 2 =у 2 /а


III. Общие методы решения уравнений 11. Метод разложения на множители. Цель: Привести квадратное уравнение общего вида к виду А(х)·В(х)=0, где А(х) и В(х) – многочлены относительно х. Способы: Вынесение общего множителя за скобки; Использование формул сокращенного умножения; Способ группировки. Пример: решите уравнение 3 х 2 +2 х-1=0 12. Метод введения новой переменной. Удачный выбор новой переменной делает структуру уравнения более прозрачной Пример: решите уравнение (х 2 +3 х-25) 2 -6(х 2 +3 х-25)= - 8