Математические модели делятся на. Классификация математических моделей в зависимости от оператора модели. Цели и задачи моделирования

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

АННОТАЦИЯ

В данной курсовой работе будут рассмотрены виды математических моделей, их классификация, основные типы математических моделей, их схемы. Будут приведены примеры построения математических моделей на нескольких примерах. Эта работа поможет студентам разобраться во всем многообразии видов и типов математических моделей, понять по какому принципу можно классифицировать математические модели, от чего зависит выбор той или иной математической модели. Здесь мы узнаем какие бывают схемы математических моделей и каковы их особенности.

ABSTRACT

In given term paper will are considered types of the mathematical models, their categorization. The Main types of the mathematical models, their schemes. Will cite an instance buildings of the mathematical models on several examples.

Введение

1. Моделирование

1.1 Цели и задачи моделирования

1.2 Требования к модели

2. Классификация моделей

3. Математическое моделирование

3.1 Непрерывно детерминированные модели (Д - схемы)

3.2 Дискретно-детерминированные модели (F-схемы)

3.3 Методы теории массового обслуживания

4. Выбор математической модели

4.1 Сопоставление методов построения математических моделей

4.2 Достоверность и простота модели

4.3 Проверка адекватности и идентификация модели

4.4 Выбор математической модели

5. Примеры составления математических моделей

Заключение

Список источников информации

ВВЕДЕНИЕ

На современном этапе экономического и социального развития республики предъявляются высокие требования к уровню экономической работы на всех уровнях. Сегодня особенно необходимы качественные сдвиги в экономике, существенное повышение эффективности работы всех звеньев хозяйственной системы: предприятий, объединений, отраслей. Особую важность, в условиях расширяющихся прав предприятий, в области производственно-хозяйственной деятельности, их самостоятельности в принятии управленческих решений, приобретает глубокое знание специалистами новейших достижений экономической науки, методов математического моделирования и прогнозирования экономических процессов на основе информационных технологий оптимальных решений. Эти обстоятельства выдвигают повышенные требования к качеству подготовки специалистов, которые должны владеть новейшими достижениями наук и уметь, используя их богатый арсенал методов, находить самые эффективные управленческие решения, а, это, в свою очередь, определяет роль и место математических методов оптимизации в учебном процессе. моделирование обслуживание детерминированный

Методы математического моделирования, являясь мощным инструментом исследований экономических процессов, играет весьма важную роль в анализе и синтезе экономического развития, определение обеспечивает многоуровневую оптимизацию, схватывающую взаимосвязи отраслей, регионов и предприятий.

В науке, технике и экономике используются модели, которые общепринятым, формальным способом описывают характерные особенности систем и позволяют осуществлять достаточно надежное прогнозирование их поведение. Простейшими моделями могут выступать таблицы или графики, связывающие величины воздействия на систему с величинами, отражающими ее реакцию на эти воздействия. Более высокий уровень моделей - уравнения, отражающие подобную связь (алгебраические, дифференциальные, интегральные и пр.). свойства сложной системы отражают совокупностью различных уравнений. Такие модели называют математическими и описывают классы систем. Независимо от способа создания математической модели, она всегда приближенно отражает исследуемую систему. Это связано с неполнотой наших знаний о природе протекающих в системе процессов, с невозможностью учесть все процессы и их особенности (чрезмерно громоздкая математическая модель), с неточным представлением данных о системе и ее элементах. Имея математическую модель системы, можно проводить прогнозирование ее поведения в различных ситуациях (проводить математическое моделирование системы).

1. МОДЕЛИРОВАНИЕ

Моделировaние - это изучение объектa путем построения и исследования его модели, осуществляемое с определенной целью и состоит в зaмене экспериментa с оригиналом экспериментом на модели. Модель должна строится так, чтобы она наиболее полно воспроизводила те кaчествa oбъектa, которые необходимо изучить в соответствии с поставленной целью. Во всех отношениях модель должна быть проще объекта и удобнее его для изучения. Таким образом, для одного и того же объекта могут существовать различные модели, классы моделей, соответствующие различным целям его изучения. Необходимым условием моделирования является подобие объекта и его модели. Т.е. моделирование - это замещение одного объекта (оригинала) другим (моделью) и фиксация и изучение свойств модели. Замещение производится с целью упрощения , удешевления, ускорения изучения свойств оригинала.

В общем случае объектом-оригиналом может быть естественная или искусственная, реальная или воображаемая система. Она имеет множество параметров и характеризуется определёнными свойствами. Количественной мерой свойств системы служит множество характеристик, система проявляет свои свойства под влиянием внешних воздействий. От специaлистa, зaнимaющегося построением моделей, требуются следующие основные кaчествa:

o четкое представление о сущности физико-химических явлений, протекающих в объекте;
o умение мaтемaтически описывать протекающие процессы и применять методы моделирования;
o быть в состоянии обеспечить получение на модели содержательных результатов.

1.1 Цели и задачи моделирования

Основные цели и задачи моделирования сводятся к следующему:
1. Оптимальное проектирование новых и интенсификация действующих технологических процессов.
2. Контроль за ходом процесса, получение необходимой информации о нем и обрaботкa полученной информации с целью управления ходом технологического процесса.
3. Решение зaдaч исследования объектов, где невозможно проводить активные эксперименты - режимы работы реакторов, траектории космических объектов и т.д.
4. Мaксимaльное ускорение переносa результaтов лaборaторных исследовaний в промышленные мaсштaбы.

1.2 Требования к модели

1. Зaтрaты нa создaние модели должны быть знaчительно меньше зaтрaт нa создaние оригинaлa.
2. Должны быть четко определены прaвилa интерпретaции результaтов вычислительного экспериментa.
3. Основное требовaние - модель должнa быть существенной. Это требовaние зaключaется в том, что модель должнa отрaжaть необходимые, существенные для решения конкретной зaдaчи свойствa объектa. Для одного и того же объектa сложно создaть обобщенную модель, отрaжaющую все его свойствa. Поэтому вaжно обеспечить существенность модели.
Моделирование целесообразно, когда у модели отсутствуют те признаки оригинала, которые препятствуют его исследованию.
Теория моделирования -- взаимосвязанная совокупность положений, определений, методов и средств создания моделей. Сами модели являются предметом теории моделирования.
Теория моделирования является основной составляющей общей теории систем - системологии, где в качестве главного принципа постулируются осуществимые модели: система представима конечным множеством моделей, каждая из которых отражает определённую грань её сущности.
2 . КЛАССИФИКАЦИЯ МОДЕЛЕЙ
Клaссификaцию моделей можно проводить по разным типам признаков:
- по способу познания: научно-технические, художественные, житейские;
- по природе моделей: предметные (физические / мaтериaльные), знаковые (мысленные).
Рис.1 Классификация моделей по природе
- по отношению ко времени различают статические и динамические модели;
- по характеру зависимости выходных параметров от входных модели делятся на детерминированные и стохастические.

Мaтериaльные модели - уменьшенное (увеличенное) отражение оригинaлa с сохранением физической сущности (реaктор - пробиркa). Мысленная модель - отображение оригинaлa , отрaжaющaя существенные черты и возникaющaя в сознaнии человекa в процессе познaния. Обрaзные модели носят описaтельный хaрaктер. Знaковые модели - являются мaтемaтическими описaниями процессов, явлений, объектов и обычно нaзывaются мaтемaтическими моделями. Знaковые модели могут тaкже включaть в себя схемы и чертежи.

В иды моделей по отношению ко времени и по характеру выходных параметров
Рис.2.
Физические модели. В основу классификации положена степень абстрагирования модели от оригинала. Предварительно все модели можно подразделить на 2 группы -- физические и абстрактные (математические).
Физической моделью обычно называют систему, эквивалентную или подобную оригиналу, но возможно имеющую другую физическую природу. Виды физических моделей:
натуральные;
квазинатуральные;
масштабные;
аналоговые.
Натуральные модели -- это реальные исследуемые системы (макеты, опытные образцы). Имеют полную адекватность (соответствия) с системой оригиналом, но дороги.

Квазинатуральные модели -- совокупность натуральных и математических моделей. Этот вид используется тогда, когда модель части системы не может быть математической из-за сложности её описания (модель человека оператора) или когда часть системы должна быть исследована во взаимодействии с другими частями, но их ещё не существует или их включение очень дорого (вычислительные полигоны, автоматизированные системы управления).

Масштабная модель -- это система той же физической природы, что и оригинал, но отличается от него масштабами. Методологической основой масштабного моделирования является теория подобия. При проектировании вычислительных систем масштабные модели могут использоваться для анализа вариантов компоновочных решений.

Аналоговыми моделями называют системы, имеющие физическую природу, отличающуюся от оригинала, но сходные с оригиналом процессы функционирования. Для создания аналоговой модели требуется наличие математического описания изучаемой системы. В качестве аналоговых моделей используются механические, гидравлические, пневматические и электрические системы. Аналоговое моделирование использует при исследовании средства вычислительной техники на уровне логических элементов и электрических цепей, а так же на системном уровне, когда функционирование системы описывается например, дифференциальными или алгебраическими уравнениями.

Математические модели представляют собой формализованное представление системы с помощью абстрактного языка, с помощью математических соотношений, отражающих процесс функционирования системы. Для составления математических моделей можно использовать любые математические средства -- алгебраическое, дифференциальное, интегральное исчисления, теорию множеств, теорию алгоритмов и т.д. По существу вся математика создана для составления и исследования моделей объектов и процессов.

К средствам абстрактного описания систем относятся также языки химических формул, схем, чертежей, карт, диаграмм и т.п. Выбор вида модели определяется особенностями изучаемой системы и целями моделирования, т.к. исследование модели позволяет получить ответы на определённую группу вопросов. Для получения другой информации может потребоваться модель другого вида. Математическое модели можно классифицировать на детерминированные и вероятностные, аналитические, численные и имитационные.

Аналитической моделью называется такое формализованное описание системы, которое позволяет получить решение уравнения в явном виде, используя известный математический аппарат.
Численная модель характеризуется зависимостью (1.2) такого вида, который допускает только частные решения для конкретных начальных условий и количественных параметров моделей.

Имитационная модель -- это совокупность описания системы и внешних воздействий, алгоритмов функционирования системы или правил изменения состояния системы под влиянием внешних и внутренних возмущений. Эти алгоритмы и правила не дают возможности использования имеющихся математических методов аналитического и численного решения, но позволяют имитировать процесс функционирования системы и производить вычисления интересующих характеристик. Имитационные модели могут быть созданы для гораздо более широкого класса объектов и процессов, чем аналитические и численные. Поскольку для реализации имитационных моделей служат ВС, средствами формализованного описания ИМ служат универсальные и специальные алгоритмические языки. ИМ в наибольшей степени подходят для исследования ВС на системном уровне.

3 . МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Это вaжнейший метод современного нaучного исследовaния, основной aппaрaт системного aнaлизa. Мaтемaтическое моделировaние - это изучение поведения объектa в тех или иных условиях путем решения урaвнений его мaтемaтичекой модели. В химической технологии мaтемaтическое моделировaние применяют прaктически нa всех уровнях исследовaния, рaзрaботки и внедрения. Дaнный метод бaзируется нa мaтемaтическом подобии. У мaтемaтически подобных объектов процессы облaдaют рaзличной физической природой, но описывaются идентичными урaвнениями.

Нa первых порaх своего рaзвития мaтемaтическое моделировaние нaзывaлось aнaлоговым. Более того, использовaние методa aнaлогии привело к появлению aнaлоговых вычислительных мaшин - AВМ. Это электронные устройствa, состоящие из интегрaторов, дифференцирующих устройств, суммaторов и усилителей. Нa AВМ моделируются физические явления, которые aнaлогичны эффектaм электрической природы. По срaвнению с физическим мaтемaтическое моделировaние - более универсaльный метод.

Математическое моделирование:
- позволяет осуществить с помощью одного устройствa (ЭВМ) решение целого клaссa зaдaч, имеющих одинaковое мaтемaтическое описaние;
- обеспечивaет простоту переходa от одной зaдaчи к другой, позволяет вводить переменные пaрaметры, возмущения и рaзличные нaчaльные условия;
- дaет возможность проводить моделировaние по чaстям ("элементaрным процессaм"), что особенно существенно при исследовaнии сложных объектов химической технологии;
- экономичнее методa физического моделировaния кaк по зaтрaтaм, тaк и по стоимости.
Исходной информацией при построении математической модели процессов функционирования систем служат данные о назначении и условиях работы исследуемой (проектируемой) системы S. Эта информация определяет основную цель моделирования, требования к математической модели, уровень абстрагирования, выбор математической схемы моделирования.
Понятие математическая схема позволяет рассматривать математику не как метод расчёта, а как метод мышления, средства формулирования понятий, что является наиболее важным при переходе от словесного описания к формализованному представлению процесса её функционирования в виде некоторой математической модели.
При пользовании математической схемой в первую очередь исследователя системы должен интересовать вопрос об адекватности отображения в виде конкретных схем реальных процессов в исследуемой системе, а не возможность получения ответа (результата решения) на конкретный вопрос исследования.
Математическую схему можно определить как звено при переходе от содержательного к формализованному описанию процесса функционирования системы с учётом воздействия внешней среды. Т.е. имеет место цепочка: описательная модель -- математическая схема -- имитационная модель.
В качестве детерминированных моделей, когда при исследовании случайный факт не учитывается, для представления систем, функционирующих в непрерывном времени, используются дифференциальные, интегральные и др. уравнения, а для представления систем, функционирующих в дискретном времени -- конечные автоматы и конечно разностные схемы.

В начале стохастических моделей (при учёте случайного фактора) для представления систем с дискретным временем используются вероятностные автоматы, а для представления систем с непрерывным временем -- системы массового обслуживания (СМО). Большое практическое значение при исследовании сложных индивидуальных управленческих систем, к которым относятся автоматизированные системы управления, имеют так называемые агрегативные модели.

Aгрегативные модели (системы) позволяют описать широкий круг объектов исследования с отображением системного характера этих объектов. Именно при агрегативном описании сложный объект расчленяется на конечное число частей (подсистем), сохраняя при этом связи, обеспечивая взаимодействие частей.

3 .1 Непрерывно детерминированные м о дели (Д - схемы)

Рассмотрим особенности непрерывно детерминированного подхода на примере, используя в качестве математической модели дифференциальные уравнения.

Дифференциальными уравнениями называются такие уравнения, в которых неизвестными будут функции одной переменной или нескольких переменных, причём в уравнение входят не только их функции но их производные различных порядков.

Если неизвестные - функции многих переменных, то уравнения называются -- уравнения в частных производных. Если неизвестные функции одной независимой переменной, то имеют место обыкновенные дифференциальные уравнения.

Математическое соотношение для детерминированных систем в общем виде:

Например, процесс малых колебаний маятника описан обыкновенными дифференциальным уравнением где m 1 , l 1 - масса, длина подвески маятника, - угол отклонения маятника от положения равновесия. Из этого уравнения можно найти оценки интересующих характеристик, например период колебаний

Дифференциальные уравнения, Д - схемы являются математическим аппаратом теории систем автоматического регулирования, управления.

При проектировании и эксплуатации систем автоматического регулирования (САУ) необходимо выбрать такие параметры системы, которые бы обеспечивали требуемую точность управления.

Следует отметить, что часто используемые в САУ системы дифференциальных уравнений определяются путём линеаризацией управления объекта (системы), более сложного вида, имеющего нелинейности:

3 .2 Дискретно - детерминированные модели ( F -схемы)

Дискретно - детерминированные модели (ДДМ) являются предметом рассмотрения теории автоматов (ТА). ТА - раздел теоретической кибернетики, изучающей устройства, перерабатывающие дискретную информацию и меняющего свои внутренние состояния лишь в допустимые моменты времени.

Конечный автомат имеет множество внутренних состояний и входных сигналов, являющихся конечными множествами. Автомат задаётся F- схемой:

F=,

где z,x,y - соответственно конечные множества входных, выходных сигналов (алфавитов) и конечное множество внутренних состояний (алфавита). z 0 Z - начальное состояние; (z,x) - функция переходов; (z,x) - функция выхода. Автомат функционирует в дискретном автоматном времени, моментами которого являются такты, т.е. примыкающие друг к другу равные интервалы времени, каждому из которых соответствуют постоянные значения входного, выходного сигнала и внутреннего состояния. Абстрактный автомат имеет один входной и один выходной каналы.

В момент t, будучи в состоянии z(t), автомат способен воспринять сигнал x(t) и выдать сигнал y(t)=, переходя в состояние z(t+1)=, z(t)Z; y(t)Y; x(t)X. Абстрактный КА в начальном состоянии z 0 принимая сигналы x(0), x(1), x(2) … выдаёт сигналы y(0), y(1), y(2)… (выходное слово).

Существуют F- автомат 1-ого рода (Миля), функционирующий по схеме:

z(t+1)= , t=0,1,2…(1)

y(t)=, t=0,1,2…(2)

автомат 2-ого рода:

z(t+1)= , t=0,1,2…(3)

y(t)=, t=1,2,3…(4)

Автомат 2-ого рода, для которого y(t)=, t=0,1,2,…(5)

т.е. функция выходов не зависит от входной переменной x(t), называется автоматом Мура.

Т.о. уравнения 1-5 полностью задающие F- автомат, являются частным случаем уравнения

(6)

где - вектор состояния, - вектор независимых входных переменных, - вектор воздействий внешней среды, - вектор собственных внутренних параметров системы, - вектор начального состояния, t - время; и уравнение,(7)

когда система S - деноминированная и на её вход поступает дискретный сигнал x.

По числу состояний конечные автоматы бывают с памятью и без памяти. Автоматы с памятью имеют более одного состояния, а автоматы без памяти (комбинационные или логические схемы) обладают лишь одним состоянием. При этом согласно (2), работа комбинационной схемы заключается в том, что она ставит в соответствие каждому входному сигналу x(t) определённый выходной сигнал y(t), т.е. реализует логическую функцию вида:

y(t)=, t=0,1,2,…

Эта функция называется булевой, если алфавиты X и Y, которым принадлежат значения сигналов x и y состоят из 2-х букв.

По характеру отсчёта времени (дискретному) F- автоматы делятся на синхронные и асинхронные. В синхронных автоматах моменты времени, в которые автомат "считывает" входные сигналы, определяются принудительно синхронизирующими сигналами. Реакция автомата на каждое значение входного сигнала заканчивается за один такт синхронизации. Асинхронный F- автомат считывает входной сигнал непрерывно и поэтому, реагируя на достаточно длинный водной сигнал постоянной величины x, он может, как это следует из 1-5, несколько раз изменить своё состояние, выдавая соответствующее число выходных сигналов, пока не перейдёт в устойчивое.

Для задания F- автомата необходимо описать все элементы множества F=, т.е. входной, внутренний и выходной алфавиты, а также функции переходов и выходов. Для задания работы F- автоматов наиболее часто используются табличный, графический и матричный способ.

В табличном способе задания используется таблицы переходов и выходов, строки которых соответствуют входным сигналам автомата, а столбцы - его состояниям. При этом обычно 1-ый столбец слева соответствует начальному состоянию z 0 . На пересечении i-ой строки и j-ого столбца таблицы переходов помещается соответствующее значение (z k ,x i) функции переходов, а в таблице выходов - (z k , x i) функции выходов. Для F- автомата Мура обе таблицы можно совместить, получив т.н. отмеченную таблицу переходов, в которой над каждым состоянием z k автомата, обозначающим столбец таблицы, стоит соответствующий этому состоянию, согласно (5), выходной сигнал (z i).

Описание работы F- автомата Мили таблицами переходов и выходов иллюстрируется таблицей 3.1., а описание F- автомата Мура - таблицей переходов 3.2..

Таблица 3.1. Описание работы автомата Мили

Переходы

…………………………………………………………

…………………………………………………………

Таблица 3.2. Описание работы автомата Мура

……………………………………………………

Примеры табличного способа задания F- автомата Мили F1 с тремя состояниями, двумя входными и двумя выходными сигналами приведены в таблице 3.3, а для F- автомата Мура F2 - в таблице 3.4.

Таблица 3.3. Способ задания автомата Мили с тремя состояниями

Переходы

Таблица 3.4. Способ задания автомата Мура с тремя состояниями

При другом способе задания конечного автомата используется понятие направленного графа. Граф автомата представляет собой набор вершин, соответствующих различным состояниям автомата и соединяющих вершин дуг графа, соответствующих тем или иным переходам автомата. Если входной сигнал x k вызывает переход из состояния z i в состояние z j , то на графе автомата дуга, соединяющая вершину z i с вершиной z j обозначается x k . Для того, чтобы задать функцию переходов, дуги графа необходимо отметить соответствующими выходными сигналами. Для автоматов Мили эта разметка производиться так: если входной сигнал x k действует на состояние z i , то согласно сказанному получается дуга, исходящая из z i и помеченная x k ; эту дугу дополнительно отмечают выходным сигналом y=(z i , x k). Для автомата Мура аналогичная разметка графа такова: если входной сигнал x k , действуя на некоторое состояние автомата, вызывает переход в состояние z j , то дугу, направленную в z j и помеченную x k , дополнительно отмечают выходным сигналом y=(z j , x k). На рис. 3 приведены заданные ранее таблицами F- автоматы Мили F1 и Мура F2 соответственно.

Рис. 3 . Графы автоматов Мили (а) и Мура (б)

При решении задач моделирования часто более удобной формой является матричное задание конечного автомата. При этом матрица соединений автомата есть квадратная матрица С=|| c ij ||, строки которой соответствуют исходным состояниям, а столбцы - состояниям перехода. Элемент c ij =x k /y S в случае автомата Мили соответствует входному сигналу x k , вызывающему переход из состояния z i в состояние z j и выходному сигналу y S , выдаваемому при этом переходе. Для автомата Мили F1, рассмотренного выше, матрица соединений имеет вид:

Если переход из состояния z i в состояние z j происходит под действием нескольких сигналов, элемент матрицы c ij представляет собой множество пар "вход/выход" для этого перехода, соединённых знаком дизъюнкции.

Для F- автомата Мура элемент c ij равен множеству входных сигналов на переходе (z i z j), а выход описывается вектором выходов:

i-ая компонента которого выходной сигнал, отмечающий состояние z i

Пример. Для рассмотренного ранее автомата Мура F2 запишем матрицу состояний и вектор выходов:

;

Для детерминированных автоматов переходы однозначны. Применительно к графическому способу задания F- автомата это означает, что в графе F- автомата из любой вершины не могут выходить 2 и более ребра, отмеченные одним и тем же входным сигналом. Аналогично этому в матрице соединений автомата С в каждой строке любой входной сигнал не должен встречаться более одного раза.

Рассмотрим вид таблицы переходов и графа асинхронного конечного автомата. Для F- автомата состояние z k называется устойчивым, если для любого входа x i X, для которого (z k ,x i)=z k имеет место (z k x i)=y k . Т.о. F- автомат называется асинхронным, если каждое его состояние z k Z устойчиво.

На практике всегда автоматы являются асинхронными, а устойчивость их состояний обеспечивается тем или иным способом, например, введением сигналов синхронизации. На уровне абстрактной теории удобно часто оперировать с синхронными конечными автоматами.

Пример. Рассмотрим асинхронный F- автомат Мура, который описан в табл. 3.5 и приведён на рис. 4.

Таблица 3.5. Асинхронный автомат Мура

Рис. 4 . Граф асинхронного автомата Мура

Если в таблице переходов асинхронного автомата некоторое состояние z k стоит на пересечении строки x S и столбца z S (Sk), то это состояние z k обязательно должно встретиться в этой же строке в столбце z k .

С помощью F-схем описываются узлы и элементы электронных вычислительных систем, устройства контроля, регулирования и управления, системы временной и пространственной коммутации в технике обмена информацией. Широта применения F-схем не означает их универсальность. Этот подход непригоден для описания процессов принятия решений, процессов в динамических системах с наличием переходных процессов и стохастических элементов.

3.3 Непрерывно-стохастические модели (Q - схемы)

К ним относятся системы массового обслуживания (англ. queuing system), которые называют Q- схемами.

Предмет теории массового обслуживания -- системы массового обслуживания (СМО) и сети массового обслуживания. Под СМО понимают динамическую систему, предназначенную для эффективного обслуживания случайного потока заявок при ограниченных ресурсах системы. Обобщённая структура СМО приведена на рисунке 5.

Рис. 5 . Схема СМО

Поступающие на вход СМО однородные заявки в зависимости от порождающей причины делятся на типы, интенсивность потока заявок типа i (i=1…M) обозначено i . Совокупность заявок всех типов - входящий поток СМО.

Обслуживание заявок выполняется m каналами. Различают универсальные и специализированные каналы обслуживания. Для универсального канала типа j считается известными функции распределения F ji () длительности обслуживания заявок произвольного типа. Для специализированных каналов функции распределения длительности обслуживания каналов заявок некоторых типов являются неопределёнными, назначение этих заявок на данный канал.

В качестве процесса обслуживания могут быть представлены различные по своей физической природе процессы функционирования экономических, производственных, технических и других систем, например, потоки поставок продукции некоторому предприятию, потоки деталей и комплектующих изделий на сборочном конвейере цеха, заявки на обработку информации электронных вычислительных систем от удалённых терминалов и т.д. При этом характерным для работы таких объектов является случайное поведение заявок (требований) на обслуживание и завершение обслуживания в случайные моменты времени.

Q - схемы можно исследовать аналитически и имитационными моделями. Последнее обеспечивает большую универсальность.

Рассмотрим понятие массового обслуживания.

В любом элементарном акте обслуживания можно выделить две основные составляющие: ожидание обслуживания заявкой и собственно обслуживание заявки. Это можно отобразить в виде некоторого i-ого прибора обслуживания П i , состоящего из накопителя заявок, в котором может находится одновременно l i =0…L i H заявок, где L i H - ёмкость i-ого накопителя, и канала обслуживания заявок, k i .

Рис. 6 . Схема прибора СМО

На каждый элемент прибора обслуживания П i поступают потоки событий: в накопитель H i поток заявок w i , на канал k i - поток обслуживания u i .

Потоком событий (ПС) называется последовательность событий, происходящих одно за другим в какие-то случайные моменты времени. Различают потоки однородных и неоднородных событий. Однородный ПС (ОПС) характеризуется только моментами поступления этих событий (вызывающими моментами) и задаётся последовательностью {t n }={0t 1 t 2 …t n …}, где t n - момент поступления n- ого события - неотрицательное вещественное число. ОПС может быть также задан в виде последовательности промежутков времени между n-ым и n-1-ым событиями { n }.

Неоднородным ПС называется последовательность {t n , f n } , где t n - вызывающие моменты; f n - набор признаков события. Например, может быть задана принадлежность к тому или иному источнику заявок, наличие приоритета, возможность обслуживания тем или иным типом канала и т.п.

Рассмотрим ОПС, для которого i { n }- случайные величины, независимые между собой. Тогда ПС называется потоком с ограниченным последействием.

ПС называется ординарным, если вероятность того, что на малый интервал времени t, примыкающий к моменту времени t попадает больше одного события Р 1 (t, t) пренебрежительно мала.

Если для любого интервала t событие P 0 (t, t) + P 1 (t, t) + Р 1 (t, t)=1, P 1 (t, t) - вероятность попадания на интервал t ровно одного события. Как сумма вероятностей событий, образующих полную группу и несовместных, то для ординарного потока событий P 0 (t, t) + P 1 (t, t) 1, Р 1 (t, t)=(t), где (t)- величина, порядок малости который выше, чем t, т.е. lim((t))=0 при t0.

Стационарным ПС называется поток, для которого вероятность появления того или иного числа событий на интервале времени зависит от длины этого участка и не зависит от того, где на оси времени 0 - t взят этот участок. Для ОПС справедливо 0*P 0 (t, t) + 1*P 1 (t, t)= P 1 (t, t) - среднее число событий на интервале t. Среднее число событий, наступающих на участке t в единицу времени составляет P 1 (t, t)/t. Рассмотрим предел этого выражения при t0

lim P 1 (t, t)/t=(t)*(1/един.вр.).

Если этот предел существует, то он называется интенсивностью (плотностью) ОПС. Для стандартного ПС (t)==const.

Применительно к элементарному каналу обслуживания k i можно считать что поток заявок w i W, т.е. интервалы времени между моментами появления заявок на входе k i образуют подмножество неуправляемых переменных, а поток обслуживания u i U, т.е. интервалы времени между началом и окончанием обслуживания заявки образуют подмножество управляемых переменных.

Заявки, обслуженные каналом k i и заявки, покинувшие прибор П i по различным причинам не обслуженными, образуют выходной поток y i Y.

Процесс функционирования прибора обслуживания П i можно представить как процесс изменения состояний его элементов во времени Z i (t). Переход в новое состояние для П i означает изменение кол-ва заявок, которые в нём находятся (в канале k i и накопителе H i). Т.о. вектор состояний для П i имеет вид: , где - состояния накопителя, (=0 - накопитель пуст, =1- в накопителе одна заявка…, =- накопитель занят полностью; - состояние канала k i (=0 - канал свободен, =1 канал занят).

Q-схемы реальных объектов образуются композицией многих элементарных приборов обслуживания П i . Если k i различных приборов обслуживания соединены параллельно, то имеет место многоканальное обслуживание (многоканальная Q-схема), а если приборы П i и их параллельные композиции соединены последовательно, то имеет место многофазное обслуживание (многофазная Q-схема).

Т.о. для задания Q-схемы необходимо оператор сопряжения R, отражающий взаимосвязь элементов структуры.

Связи в Q-схеме изображают в виде стрелок (линий потока, отражающих направление движения заявок). Различают разомкнутые и замкнутые Q-схемы. В разомкнутой выходной поток не может снова поступить на какой-либо элемент, т.е. обратная связь отсутствует.

Собственными (внутренними) параметрами Q-схемы будут являться кол-во фаз L Ф, количество каналов в каждой фазе, L kj , j=1… L Ф, количество накопителей каждой фазы L kj , k=1… L Ф, ёмкость i-ого накопителя L i H . Следует отметить, что в теории массового обслуживания в зависимости от ёмкости накопителя применяют следующую терминологию:

системы с потерями (L i H =0, накопитель отсутствует);

системы с ожиданием (L i H);

системы с ограниченной ёмкостью накопителя Н i (смешанные).

Обозначим всю совокупность собственных параметров Q-схемы как подмножество Н.

Для задания Q-схемы также необходимо описать алгоритмы её функционирования, которые определяют правила поведения заявок в различных неоднозначных ситуациях.

В зависимости от места возникновения таких ситуаций различают алгоритмы (дисциплины) ожидания заявок в накопителе Н i и обслуживания заявок каналом k i . Неоднородность потока заявок учитывается с помощью введения класса приоритетов.

В зависимости от динамики приоритетов Q-схемы различают статические и динамические. Статические приоритеты назначаются заранее и не зависят от состояний Q-схемы, т.е. они являются фиксированными в пределах решения конкретной задачи моделирования. Динамические приоритеты возникают при моделировании. Исходя из правил выбора заявок из накопитель Н i на обслуживание каналом k i можно выделить относительные и абсолютные приоритеты. Относительный приоритет означает, что заявка с более высоким приоритетом, поступившая в накопитель Н, ожидает окончания обслуживания представляющей заявки каналом k i и только после этого занимает канал. Абсолютный приоритет означает, что заявка с более высоким приоритетом, поступившая в накопитель, прерывает обслуживание каналом k i заявки с более низким приоритетом и сами занимает канал (при этом вытесненная из k i заявка может либо покинуть систему, либо может быть снова записана на какое-то место в Н i).

Необходимо также знать набор правил, по которым заявки покидают Н i и k i: для Н i - либо правила переполнения, либо правила ухода, связанные с истечением времени ожидания заявки в Н i ; для k i - правила выбора маршрутов или направлений ухода. Кроме того, для заявок необходимо задать правила, по которым они остаются в канале k i , т.е. правила блокировок канала. При этом различают блокировки k i по выходу и по входу. Такие блокировки отражают наличие управляющих связей в Q_схеме, регулирующих поток заявок в зависимости от состояний Q_схемы. Набор возможных алгоритмов поведения заявок в Q_схеме можно представить в виде некоторого оператора алгоритмов поведения заявок А.

Т.о. Q_схема, описывающая процесс функционирования СМО любой сложности однозначно задаётся в виде набора множеств: Q = .

4 . ВЫБОР МАТЕМАТИЧЕСКОЙ МОДЕЛИ

4 .1 Сопоставление методов по строения мaтемaтических моделей

Выбор метода зависит от важности и степени сложности процесса. Для крупных многотоннажных производств необходимы хорошие модели, здесь применяют теоретический метод. Этим же методом пользуются при создании принципиально новых технологических процессов.

Для мелких производств со сложным хaрaктером процесса используют экспериментальный метод. На практике, как правило, используется разумное сочетание всех методов.

4 .2 Достоверность и простота модели

Построенная одним из рассмотренных выше методов мaтемaтическaя модель одновременно должна удовлетворять требованиям достоверности и простоты.

Достоверная модель, правильно описывающaя поведение объекта, может окaзaться весьма сложной. Сложность модели определяется, как правило, сложностью исследуемого объекта и степенью точности, предъявляемой практикой к результатам расчета. Необходимо, чтобы эта сложность не превосходила некоторого предела, определяемого возможностями существующего мaтемaтического аппарата. Следовательно, модель должна быть достаточно простой в математическом отношении, чтобы ее можно было решить имеющимися методами и средствами.

4 . 3 Проверка а дек в а тности и идентификация модели

Проверка адекватности - это оценка достоверности построенной математической модели, исследование ее соответствия изучаемому объекту.

Проверка aдеквaтности осуществляется на тестовых экспериментах путем сравнения результатов рaсчетa по модели с результaтaм эксперимента на изучаемом объекте при одинаковых условиях. Это позволяет установить границы применимости построенной модели.

Основным этапом в построении адекватной модели является идентификация мaтемaтического описания мaтемaтического описания объекта. Задачей идентификации является определение вида модели и нахождения неизвестных ее параметров - отдельных констант или их комплексов, характеризующих свойства объекта. Идентификация возможна при наличии необходимой экспериментальной информации об изучаемом объекте.

4.4 Выбор математической модели

Зaдaчa выбора модели возникает при наличии для одного и того же объекта клaссa моделей. Выбор модели является одним из важнейших этапов моделирования. В конечном счете, преимущество той или иной модели определяет критерий практики, понимаемый в широком смысле. При выборе модели следует исходить из разумного компромисс между сложностью модели, полнотой получаемых с ее помощью характеристик объекта и точностью этих характеристик. Так, если модель недостаточно точна, то ее нужно дополнить, уточнить введением новых факторов, может также оказаться, что предложенная модель слишком сложна и те же результаты можно получить с помощью более простой модели.

Иногда из-за ограниченности имеющихся средств приходится упрощать мaтемaтическое описание. В этом случае необходима оценка вносимой при этом погрешности.
При решении уравнений математического описания с использованием электронных вычислительных систем необходимо создание моделирующего aлгоритмa ("машинной" модели). Моделирующий алгоритм является преобрaзовaнным мaтемaтическим описанием и представляет собой последовательность арифметических и логических операций решения, записанную в виде программы.
При разработке такого aлгоритмa, прежде всего, необходимо выбрать метод решения уравнений мaтемaтического описания - аналитический или численный. Следует помнить о необходимости проверки точности выбранного метода расчета.
5. ПРИМЕРЫ СОСТАВЛЕНИЯ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ
В этом разделе рассмотрим типичные примеры составления математических моделей для решения самых различных задач, как народного хозяйства, так и школьных задач по математике.
ПРИМЕР 1
Построить математическую модель формирования плана производства.
Таблица 5.1. Исходные данные
Определить объем производства продукции, обеспечивающий получение максимальной прибыли.
Построение математической модели
Пусть х 1 - количество продукции вида А, а х 2 - количество продукции В. Тогда х 1 + 4х 2 - количество материала сорта 1, требуемое на изготовление продукции, а по условию задачи это число не превышает 320
х 1 + 4х 2 <=320 (1)
1 + 4х 2 - количество материала сорта 2, требуемое на изготовление продукции, а по условию задачи это число не превышает 360
1 + 4х 2 <=360 (2)
х 1 + 2х 2 - количество материала сорта 2, требуемое на изготовление продукции, а по условию задачи это число не превышает 180
х 1 + 2х 2 <=180 (3)
кроме того, поскольку х 1 и х 2 выражают объем выпускаемой продукции, то они не могут быть отрицательными, то есть
х 1 > 0, х 2 > 0 (4)
F= х 1 + 2х 2 - прибыль, которая должна быть максимальной. Таким образом, имеем следующую математическую модель для данной задачи
F= х 1 + 2х 2 > max
ПРИМЕР 2

Транспортная задача. Имеется n городов. Выехав из одного из них, коммивояжер должен объехать все и вернуться в исходный город. В каждый город можно заезжать один раз, и, следовательно, маршрут коммивояжера должен образовывать замкнутый цикл без петель. Требуется найти кратчайший замкнутый маршрут коммивояжера, если известна матрица расстояний между городами.

Математическая модель рассматриваемой задачи имеет вид:

Здесь переменная х ij принимает значение 1, если коммивояжер переезжает из города i в город j (i,j = 1,2,…,n, i ? j) и 0 в противном случае. Условие (1) представляет собой оптимизируемую функцию, где с ij - расстояния между городами (i,j = 1,2,…,n, i ? j), причем в общем случае с ij ? с ij ; условие (2) означает, что коммивояжер выезжает из каждого города только один раз; (3) - что он въезжает в каждый город только один раз; (4) обеспечивает замкнутость маршрута и отсутствие петель, где u i и u j - некоторые вещественные значения (i,j = 1,2,…,n, i ? j) (5).

ПРИМЕР 3

Некоторое предприятие производит продукцию 5 видов, используя комплектующие детали 7 наименований А, В, С, D, Е, F, G. Запасы предприятия ограничены некоторым количеством комплектующих деталей. Известно, сколько требуется комплектующих деталей для производства единицы продукции каждого вида и прибыль от производства единицы продукции каждого вида. Определить, сколько требуется продукции каждого вида, чтобы обеспечить предприятию наибольшую прибыль.

Таблица 5.2. Данные по производству продукции
Комплек

Первый вид продукции

Первый вид продукции

Первый вид продукции

Первый вид продукции

Первый вид продукции

Количество комплектующих на складе, шт.

Требуемое количество комплектующих, шт.

Доход от единицы продукции, тыс. руб.

Требуемый объем производства, шт.

Х 1

Х 2

Х 3

Х 4

Х 5

F = 2х 1 + 3х 2 + х 3 + 5х 4 + 4х 5 -
прибыль, которая должна быть максимальной. Таким образом, имеем количество комплектующих для производства оптимального количества продукции:
1 + 2х 2 + х 5 ? 10
количество комплектующих А для производства продукции;
х 1 + 2х 2 + х 4 ? 7
количество комплектующих В для производства продукции;
1 + х 4 ? 12
количество комплектующих С для производства продукции;
4 ? 12
количество комплектующих D для производства продукции;
х 3 + 2х 4 + х 5 ? 15
количество комплектующих E для производства продукции;
х 4 + 3х 5 ? 12
количество комплектующих F для производства продукции;
1 + х 4 ? 8
количество комплектующих G для производства продукции;
причем все переменные Х 1 , Х 2 , Х 3 , Х 4 , Х 5 - должны быть неотрицательные и целочисленные.
Таким образом, имеем следующую математическую модель выпуска продукции для получения максимальной прибыли:
1 + 3х 2 + х 3 + 5х 4 + 4х 5 > max
ПРИМЕР 4
Имеется производство по изготовлению двух видов продукции А и В при ограниченном объеме материалов трех сортов, из которых производится продукция. Исходные данные приведены в таблице.
Таблица 5.3. Исходные данные

Подобные документы

    Постановка цели моделирования. Идентификация реальных объектов. Выбор вида моделей, математической схемы. Построение непрерывно-стахостической модели. Основные понятия теории массового обслуживания. Определение потока событий. Постановка алгоритмов.

    курсовая работа , добавлен 20.11.2008

    Анализ основных способов построения математической модели. Математическое моделирование социально-экономических процессов как неотъемлемая часть методов экономики, особенности. Общая характеристика примеров построения линейных математических моделей.

    курсовая работа , добавлен 23.06.2013

    Изучение экономических приложений математических дисциплин для решения экономических задач: использование математических моделей в экономике и менеджменте. Примеры моделей линейного и динамического программирования как инструмента моделирования экономики.

    курсовая работа , добавлен 21.12.2010

    Моделирование. Детерминизм. Задачи детерминированного факторного анализа. Способы измерения влияния факторов в детерминированном анализе. Расчёт детерминированных экономико-математических моделей и методов факторного анализа на примере РУП "ГЗЛиН".

    курсовая работа , добавлен 12.05.2008

    Задачи, функции и этапы построения экономико-математических моделей. Аналитические, анионные, численные и алгоритмические модели. Экономическая модель спортивных сооружений. Модели временных рядов: тенденции и сезонности. Теории массового обслуживания.

    реферат , добавлен 22.07.2009

    Основные понятия и типы моделей, их классификация и цели создания. Особенности применяемых экономико-математических методов. Общая характеристика основных этапов экономико-математического моделирования. Применение стохастических моделей в экономике.

    реферат , добавлен 16.05.2012

    Составление экономико-математической модели плана производства продукции. Теория массового обслуживания. Модели управления запасами. Бездефицитная простейшая модель. Статические детерминированные модели с дефицитом. Корреляционно-регрессионный анализ.

    контрольная работа , добавлен 07.02.2013

    Теоретические основы экономико-математических методов. Этапы принятия решений. Классификация задач оптимизации. Задачи линейного, нелинейного, выпуклого, квадратичного, целочисленного, параметрического, динамического и стохастического программирования.

    курсовая работа , добавлен 07.05.2013

    Общие понятия теории массового обслуживания. Особенности моделирования систем массового обслуживания. Графы состояний СМО, уравнения, их описывающие. Общая характеристика разновидностей моделей. Анализ системы массового обслуживания супермаркета.

    курсовая работа , добавлен 17.11.2009

    Характеристика основных принципов создания математических моделей гидрологических процессов. Описание процессов дивергенции, трансформации и конвергенции. Ознакомление с базовыми компонентами гидрологической модели. Сущность имитационного моделирования.

В зависимости от того, какими средствами, при каких условиях и по отношению к каким объектам познания реализуется способность моде­лей отображать действительность, возникает их большое разнообразие, а вместе с ним - классификации. Путем обобщения существующих клас­сификаций выделим базовые модели по применяемому математическому аппарату, на основе которых получают раз­витие специальные модели (рисунок 8.1).

Рисунок 8.1 - Формальная классификация моделей

Математические модели отображают изучаемые объекты (процессы, системы) в виде явных функциональных соотношений: алгебраических равенств и неравенств, интегральных и дифферен­циальных, конечно-разностных и других математических выражений (закон распределения случайной величины, регрессионные модели и т.д.), а также отношений математической логики.

В зависимости от двух фундаментальных признаков построения математической модели - вида описания причинно-следственных связей и изменений их во вре­мени - различают детерминистические и стохастические, статические и динамические модели (рисунок 8.2).

Цель схемы, представленной на рисунке, - отобразить следующие особенности:

1) математические модели могут быть и детерминистическими, и стохастическими;

2) детерминистические и стохастические модели могут быть и статическими, и динамическими.

Математическая модель называется детерминистической (детерминированной) , если все ее параметры и переменные являются однозначно определяемыми ве­личинами, а также выполняется условие полной определенности ин формации. В противном случае, в условиях неопределенности инфор­мации, когда параметры и переменные модели - случайные величи­ны, модель называется стохастической (вероятностной) .

Рисунок 8.2 – Классы математических моделей

Модель называется динами­ческой , если как минимум одна переменная изменяется по периодам времени, и статической , если принимается гипотеза, что переменные не изменяются по периодам времени.

В простейшем случае балансовые модели выступают в виде уравнения баланса, где в левой части располагается сумма каких-либо поступлений, а в правой - расходная часть также в виде суммы. Например, в таком виде представляется годовой бюджет организации.

На основе статистических данных могут строиться не только балан­совые, но и корреляционно-регрессионные модели.

Если функция Y зависит не только от переменных х 1 , х 2 , … х n , но и от других факторов, связь между Y и х 1 , х 2 , … х n является неточной или корреляционной в отличие от точной или функциональной связи. Корреляционными, например, в большинстве случаев являются связи, наблюда­ющиеся между выходными параметрами ОПС и факторами ее внутренней и внешней среды (см. тему 5).

Корреляционно-регрессионные модели получают при исследовании влияния целого комплекса факторов на величину того или иного признака путем примене­ния статистического аппарата. При этом ставится задача не только установить корреляционную связь, но и выразить эту связь аналитически, то есть подобрать уравнения, описываю­щие данную корреляционную зависимость (уравнение регрессии).

Для нахождения численного значения параметров уравне­ния регрессии пользуются методом наименьших квадратов. Суть этого метода состоит в том, чтобы выбрать такую линию, при которой сумма квадратов отклонений от нее ординат Y отдель­ных точек была бы наименьшей.

Корреляционно-регрессионные модели часто используются при исследовании явлений, когда возникает необходимость установить зависимость между соответствующими характеристиками в двух и более рядах. При этом преимущественно используется парная и множественная линейная регрессия вида

y = a 1 x 1 + a 2 x 2 + … + a n x n + b .

В результате применения метода наименьших квадратов ус­танавливаются значения параметров a или a 1 , a 2 , …, a n и b, а затем выполняются оценки точности аппроксимации и значимости полученного уравнения регрессии.

В особую группу выделяют графоаналитиче­ские модели . Они используют различные графические изображения и поэтому обладают хорошей наглядностью.

Теория графов - одна из теорий дискретной математики, изучает графы, под которыми понимается совокупность точек и линий их соединяющих. Граф - это самостоятельный математи­ческий объект (впервые ввел Кёниг Д.). На основе теории гра­фов наиболее часто строят древовидные и сетевые модели.

Древовидная модель (дерево) - это неориентированный связ­ный граф, не содержащий петель и циклов. Примером такой модели является дерево целей.

Сетевые модели нашли широкое применение в управлении производством работ. Сетевые модели (графики) отражают последовательность выполнения работ и продолжи­тельность каждой работы (рисунок 8.3).

Рисунок 8.3 - Сетевая модель производства работ

Каждая линия сетевого графика - это некоторая работа. Цифра рядом с ней означает продолжительность ее выполнения.

Сетевые модели позволяют найти так называемый критический путь и оптимизировать график производства работ по времени при ограничениях на другие ресурсы.

Сетевые модели могут быть детерминированными и стоха­стическими. В последнем случае продолжительности выполнения работ задаются законами распределения случайных величин.

Оптимизационные модели служат для определения оптимальной траектории достижения системой поставленной цели при наложении некоторых ограничений на управление ее поведениям и движением. В этом случае оптимизационные модели описывают различного рода задачи нахождения экстремума некоторой целевой функции (критерия оптимизации).

Для выявления оптимального способа достижения цели управления в условиях ограниченных ресурсов – технических, материальных, трудовых и финансовых – применяют методы исследования операций. К ним относятся методы математическо­го программирования (линейное и нелинейное, целочисленное, ди­намическое и стохастическое программирование), аналитические и вероятностно-статистические методы, сетевые методы, методы тео­рии массового обслуживания, теории игр (теории конфликтных си­туаций) и др.

Оптимизационные модели применяются для объемного и календар­ного планирования, управления запасами, распределения ресурсов и работ, замены, параметризации и стандартизации оборудования, рас­пределения потоков товарных поставок на транспортной сети и дру­гих задач управления.

Одним из основных достижений теории исследования операций считается типизация моделей управления и методов решения задач. Например, для решения транспортной задачи, в зависимости от ее раз­мерности, разработаны типовые методы - метод Фогеля, метод по­тенциалов, симплекс-метод. Также при решении задачи управления запасами, в зависимости от ее постановки, могут использоваться ана­литические и вероятностно-статистические методы, методы динами­ческого и стохастического программирования.

В управлении особое значение придается сетевым методам плани­рования. Эти методы позволили найти новый и весьма удобный язык для описания, моделирования и анализа сложных многоэтапных работ и проектов. В исследовании операций значительное место отво­дится совершенствованию управления сложными системами с при­менением методов теории массового обслуживания (см. раздел8.3) и аппарата марков­ских процессов.

Модели марковских случайных процессов - система дифференци­альных уравнений, описывающих функционирование системы или ее процессов в виде множества упорядоченных состояний на некоторой траектории поведения системы. Этот класс моделей широко исполь­зуется при математическом моделировании функционирования слож­ных систем.

Модели теории игр служат для выбора оптимальной стратегии в ус­ловиях ограниченной случайной информации или полной неопреде­ленности.

Игра - математическая модель реальной конфликтной си­туации, разрешение которой ведется по определенным правилам, алгоритмам, описывающим некоторую стратегию поведения лица, принимающего решение в условиях неопределенности.

Различают «игры с природой» и «игры с противником». Исходя из ситуации опре­деляются методы и критерии оценки принятия решений. Так, при «играх с природой» применяют критерии: Лапласа, максиминный (кри­терий Вальда) и минимаксный, Гурвица и Сэвиджа и ряд других алго­ритмических правил. При «играх с противником» для принятия реше­ний используются платежные матрицы, максиминный и минимаксный критерии, а также специальные математические преобразования в свя­зи с тем, что лицу, принимающему решение, противостоит недобро­желательный противник.

Рассмотренные типы математических моделей не охватыва­ют всего их возможного многообразия, а лишь характеризуют отдельные виды в зависимости от принятого аспекта классифи­кации. В.А.Кардашем была предпринята попытка создания сис­темы классификации моделей по четырем аспектам детализации (рисунок 8.4).

А - модели без пространственной дифференциации параметров;

В - модели с пространственной дифференци­ацией параметров

Рисунок 8.4 - Классификация моделей по четырем аспектам детализации

С развитием вычислительных средств одним из распространенных методов принятия решений выступает деловая игра, представляющая собой численный эксперимент с активным участием человека. Существуют сотни деловых игр. Они применяются для изу­чения целого ряда проблем управления, экономики, теории организа­ции, психологии, финансов и торговли.

вектор выходных переменных, Y= t ,

Z - вектор внешних воздействий, Z= t ,

t - координата времени.

Построение математической модели заключается в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат.

Обычно их оказывается настолько много, что ввести в модель всю их совокупность не удается. При построении математической модели перед исследованием возникает задача выявить и исключить из рассмотрения факторы, несущественно влияющие на конечный результат (математическая модель обычно включает значительно меньшее число факторов, чем в реальной действительности). На основе данных эксперимента выдвигаются гипотезы о связи между величинами, выражающими конечный результат, и факторами, введенными в математическую модель . Такая связь зачастую выражается системами дифференциальных уравнений в частных производных (например, в задачах механики твердого тела, жидкости и газа, теории фильтрации, теплопроводности, теории электростатического и электродинамического полей).

Конечной целью этого этапа является формулирование математической задачи, решение которой с необходимой точностью выражает результаты, интересующие специалиста.

Форма и принципы представления математической модели зависит от многих факторов.

По принципам построения математические модели разделяют на:

  1. аналитические;
  2. имитационные.

В аналитических моделях процессы функционирования реальных объектов, процессов или систем записываются в виде явных функциональных зависимостей .

Аналитическая модель разделяется на типы в зависимости от математической проблемы:

  1. уравнения (алгебраические, трансцендентные, дифференциальные, интегральные),
  2. аппроксимационные задачи ( интерполяция , экстраполяция, численное интегрирование и дифференцирование ),
  3. задачи оптимизации,
  4. стохастические проблемы.

Однако по мере усложнения объекта моделирования построение аналитической модели превращается в трудноразрешимую проблему. Тогда исследователь вынужден использовать имитационное моделирование .

В имитационном моделировании функционирование объектов, процессов или систем описывается набором алгоритмов. Алгоритмы имитируют реальные элементарные явления, составляющие процесс или систему с сохранением их логической структуры и последовательности протекания во времени. Имитационное моделирование позволяет по исходным данным получить сведения о состояниях процесса или системы в определенные моменты времени, однако прогнозирование поведения объектов, процессов или систем здесь затруднительно. Можно сказать, что имитационные модели - это проводимые на ЭВМ вычислительные эксперименты с математическими моделями , имитирующими поведение реальных объектов, процессов или систем.

В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:

  1. детерминированные,
  2. стохастические.

В детерминированных моделях предполагается отсутствие всяких случайных воздействий, элементы модели (переменные, математические связи) достаточно точно установленные, поведение системы можно точно определить. При построении детерминированных моделей чаще всего используются алгебраические уравнения, интегральные уравнения, матричная алгебра .

Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.

По виду входной информации модели разделяются на:

  1. непрерывные,
  2. дискретные.

Если информация и параметры являются непрерывными, а математические связи устойчивы, то модель - непрерывная. И наоборот, если информация и параметры - дискретны, а связи неустойчивы, то и математическая модель - дискретная.

По поведению моделей во времени они разделяются на:

  1. статические,
  2. динамические.

Статические модели описывают поведение объекта, процесса или системы в какой-либо момент времени. Динамические модели отражают поведение объекта, процесса или системы во времени.

По степени соответствия между

Выше отмечалось, что любая математическая модель может рассматриваться как некоторый оператор А, который является алгоритмом или определяется совокупностью уравнений - алгебраических, обыкновенных дифференциальных уравнений (ОДУ), систем ОДУ (СОДУ), дифференциальных уравнений в частных производных (ДУЧП), интегродифференциальных уравнений (ИДУ) и др. (рис. 1.6).

Если оператор обеспечивает линейную зависимость выходных параметров от значений входных параметров X, то математическая модель называется линейной (рис. 1.7). Линейные модели более просты для анализа. Например, из свойства линейности следует свойство суперпозиции решений, т.е. если известны решения при и при , то решение для выходных параметров при есть . Предельные значения для линейных моделей достигаются, как правило, на границах областей допустимых значений входных параметров.

Линейное поведение свойственно относительно простым объектам. Системам, как правило, присуще нелинейное многовариантное поведение (рис. 1.8). Соответственно модели подразделяются на нелинейные.

В зависимости от вида оператора математические модели можно разделить на простые и сложные.

В случае, когда оператор модели является алгебраическим выражением, отражающим функциональную зависимость выходных параметров fot входных X, модель будем называть простой.

В качестве примеров простых моделей можно привести многие законы физики (закон всемирного тяготения, закон Ома, закон Гука, закон трения Амонтона-Кулона), а также все эмпирические, т.е. полученные из опыта, алгебраические зависимости между входными и выходными параметрами.

Модель, включающая системы дифференциальных и интегральных соотношений, уже не может быть отнесена к простым, так как для своего исследования требует применения довольно сложных математических методов. Однако в двух случаях она может быть сведена к простым:

если полученная для подобной модели система математических соотношений может быть разрешена аналитически;

если результаты вычислительных экспериментов со сложной моделью аппроксимированы некоторой алгебраической зависимостью. В настоящее время известно достаточно большое число подходов и методов аппроксимации (например, метод наименьших квадратов или метод планирования экспериментов).

На практике довольно часто возникают ситуации, когда удовлетворительное описание свойств и поведения объекта моделирования (как правило, сложной системы) не удается выполнить с помощью математических соотношений. Однако в большинстве случаев удается построить некоторый имитатор поведения и свойств такого объекта с помощью алгоритма, который можно считать оператором модели.



Например, если в результате наблюдения за объектом получена таблица соответствия между входными Х и выходными значениями параметров, то определить оператор А, позволяющий получить «выход» по заданному «входу», зачастую бывает проще с помощью алгоритма.

Классификация математических моделей в зависимости от параметров модели (рис. 1.9)


В общем случае параметры, описывающие состояние и поведение объекта моделирования, разбиваются на ряд непересекающихся подмножеств

совокупность входных (управляемых) воздействий на объект ();

совокупность воздействий внешней среды (неуправляемых) ();

совокупность внутренних (собственных) параметров объекта ();

совокупность выходных характеристик ().

Например, при моделировании движения материальной точки в поле сил тяжести входными параметрами могут быть начальное положение и начальная скорость точки в момент времени . Сила сопротивления и сила тяжести характеризуют воздействие внешней среды. Масса точки является собственным параметром. Координата и скорость точки (при ) относятся к выходным параметрам. Отнесение параметров к входным или выходным зависит от постановки конкретной задачи. Поэтому всегда существуют прямые и обратные задачи.

Входные параметры , параметры, описывающие воздействие внешней среды , и внутренние (собственные) характеристики объекта относят обычно к независимым (экзогенным) величинам. Выходные параметры - зависимые (эндогенные) величины. В общем случае оператор модели преобразует экзогенные параметры в эндогенные .

По своей природе характеристики объекта могут быть как качественными , так и количественными . Для количественной характеристики вводятся числа, выражающие отношения между данным параметром и эталоном (например «метром»). Кроме того, количественные значения параметра могут выражаться дискретными или непрерывными величинами . Качественные характеристики находятся, например методом экспертных оценок. В зависимости от вида используемых множеств параметров модели могут подразделяться на качественные и количественные, дискретные и непрерывные, a также смешанные.

При построении модели возможны следующие варианты описания неопределенности параметров:

детерминированное - значения всех параметров модели определяются детерминированными величинами (т.е. каждому параметру соответствует конкретное целое, вещественное или комплексное число либо соответствующая функция). Данный способ соответствует полной определенности параметров;

стохастическое - значения всех или отдельных параметров модели определяются случайными величинами, заданными плотностями вероятности. Например, случаи нормального (гауссова) и показательного распределения случайных величин;

случайное - значения всех или отдельных параметров модели устанавливаются случайными величинами, заданными оценками плотностей вероятности, полученными в результате обработки ограниченной экспериментальной выборки данных параметров;

интервальное - значения всех или отдельных параметров модели описываются интервальными величинами, заданными интервалом, образованным минимальным и максимально возможными значениями параметра;

нечеткое - значения всех или отдельных параметров модели описываются функциями принадлежности соответствующему нечеткому множеству. Такая форма используется, когда информация о параметрах модели задается экспертом на естественном языке, а, следовательно, в «нечетких» терминах типа «много больше пяти», «около нуля».

Разделение моделей на одномерные, двухмерные и трехмерные применимо для таких моделей, в число параметров которых входят координаты пространства, и связано с особенностями реализации этих моделей, равно как и с резким увеличением их сложности при возрастании размерности.

Как и координаты, время относится к независимым переменным, от которых могут зависеть остальные параметры модели. Обычно чем меньше масштаб объекта, тем существеннее зависимость его параметров от времени.

Любой объект стремится перейти в некоторое равновесное состояние, как с окружающей его средой, так и между отдельными элементами самого объекта. Нарушение этого равновесия приводит к изменениям различных параметров объекта и его переходу в новое равновесное состояние.

При построении модели важным является сравнение времени существенных изменений внешних воздействий и характерных временных переходов объекта в новое равновесное состояние с окружающей средой, а также времени релаксации, определяющего установление равновесия между отдельными элементами внутри объекта. Если скорости изменения внешних воздействий на объект моделирования существенно меньше скорости релаксации, то явной зависимостью от времени в модели можно пренебречь. В этом случае говорят о квазистатическом процессе.

Совокупность значений параметров модели в некоторый момент времени или на данной стадии называется состоянием объекта.

Если скорости изменения внешних воздействий и параметров состояния изучаемого объекта достаточно велики (по сравнению со скоростями релаксации), то учет времени необходим. В этом случае объект исследования рассматривают в рамках динамического процесса .

В случае если внешние воздействия остаются постоянными или их колебания слабо отражаются на состоянии объекта в течении достаточно длительного промежутка времени то тогда в каждой фиксированной точке исследуемого пространства значения параметров модели не зависят от времени. Например, поле скоростей частиц жидкости в длинной трубе при ламинарном режиме. Подобные процессы называют стационарными . Как правило, стационарные модели применяются для описания различных потоков (жидкости, газа, тепла) в случае постоянства условий на входе и выходе потока. Для таких процессов время может быть исключено из числа независимых переменных.

Если в качестве одной из существенных независимых переменных модели необходимо использовать время (или его аналог), то модель называется нестационарной . Примером нестационарной модели является модель движения жидкости в трубе, но вытекающей из некоторого сосуда.


Классификация математических моделей в зависимости от целей моделирования (рис. 1.11)

Целью дескриптивных моделей является установление законов изменения параметров модели. Полученная модель описывает зависимость выходных параметров от входных. Поэтому дескриптивные модели являются реализацией описательных и объяснительных содержательных моделей на формальном уровне моделирования.

Оптимизационные модели предназначены для определения оптимальных (наилучших) с точки зрения некоторого критерия параметров моделируемого объекта или же для поиска оптимального (наилучшего) режима управления некоторым процессом. Часть параметров модели относят к параметрам управления, изменяя которые можно получать различные варианты наборов значений выходных параметров. Как правило, данные модели строятся с использованием одной или нескольких дескриптивных моделей и включают некоторый критерий, позволяющий сравнивать различные варианты наборов значений выходных параметров между собой с целью выбора наилучшего. На область значений входных параметров могут быть наложены ограничения в виде равенств и неравенств, связанные с особенностями рассматриваемого объекта или процесса. Целью оптимизационных моделей является поиск таких допустимых параметров управления, при которых критерий выбора достигает своего «наилучшего значения».

Управленческие модели применяются для принятия эффективных управленческих решений в различных областях целенаправленной деятельности человека. В общем случае принятие решений является процессом, по своей сложности сравнимым с процессом мышления в целом. Однако на практике под принятием решений обычно понимается выбор некоторых альтернатив из заданного их множества, а общий процесс принятия решений представляется как последовательность таких выборов альтернатив.

Сложность задачи заключается в наличии неопределенности как по исходной информации и характеру воздействия внешних условий, так и по целям. Поэтому в отличие от оптимизационных моделей, где критерий выбора считается определенным и искомое решение устанавливается из условий его экстремальности (максимума или минимума), в управленческих моделях необходимо введение специфических критериев оптимальности, которые позволяют сравнивать альтернативы при различных неопределенностях задачи.

Поскольку оптимальность принятого решения даже в одной и той же ситуации может пониматься по-разному, вид критерия оптимальности в управленческих моделях заранее не фиксируется. Именно в этом состоит основная особенность данных моделей.

Классификация математических моделей в зависимости от методов реализации (рис. 1.12)


Метод реализации модели относят к аналитическим , если он позволяет получить выходные параметры в виде аналитических выражений, т.е. выражений, в которых используется не более чем счетная совокупность арифметических операций и переходов к пределу. Примеры аналитических выражений:

,

Частным случаем аналитических выражений являются алгебраические выражения, в которых используется конечное или счетное число арифметических операций, операций возведения в целочисленную степень и извлечения корня. Пример алгебраических выражений: .

Очень часто аналитическое решение для модели представляют в элементарных или специальных функциях. Для получения значений этих функций при конкретных значениях входных параметров используют их разложение в ряды (например, Тейлора). Так, показательная функция может быть представлена следующим рядом:

Учитывая различное число членов ряда, можно вычислять значение функции с различной степенью точности. Таким образом, значение функции при каждом значении аргумента в этом случае определяется приближенно. Модели, использующие подобный прием, называются приближенными .

Аналитические методы реализации модели являются более ценными, однако их не всегда можно получить.

При численном подходе совокупность математических соотношений модели заменяется конечномерным аналогом. Это чаще всего достигается дискретизацией исходных соотношений, т.е. переходом от функций непрерывного аргумента к функциям дискретного аргумента. После дискретизации исходной задачи выполняется построение вычислительного алгоритма. Найденное решение дискретной задачи принимается за приближенное решение исходной математической задачи. Основным требованием к вычислительному алгоритму является необходимость получения решения исходной задачи с заданной точностью за конечное число шагов.

При имитационном подходе на отдельные элементы разбивается сам объект исследования. В этом случае система математических соотношений для объекта-системы в целом не записывается, а заменяется некоторым алгоритмом, моделирующим ее поведение и учитывающим взаимодействие друг с другом моделей отдельных элементов системы. Модели отдельных элементов могут быть как аналитическими, так и алгебраическими.

ЭТАПЫ ПОСТРОЕНИЯ МАТЕМАТИЧЕСКОЙ МОДЕЛИ

Отличительной особенностью математических моделей, создаваемых в настоящее время, является их комплексность, связанная со сложностью моделируемых объектов. Что приводит к усложнению модели и необходимости совместного использования нескольких теорий (нередко - из разных областей знания), применения современных вычислительных методов и вычислительной техники для получения и анализа результатов моделирования. Сегодня повсеместное использование моделей в практике инженерно-технической деятельности вызвало необходимость в алгоритме построения мат. моделей.

Процесс построения любой математической модели можно представить последовательностью этапов, представленных на рис. 2.1.

2.1. ОБСЛЕДОВАНИЕ ОБЪЕКТА МОДЕЛИРОВАНИЯ

Математические модели, особенно использующие численные методы и вычислительную технику, требуют для своего построения значительных интеллектуальных, финансовых и временных затрат. Поэтому решение о разработке новой модели принимается лишь в случае отсутствия иных, более простых путей решения возникших проблем (например, модификации одной из существующих моделей). Если это решение все-таки принято, то порядок действий следующий.

Основной целью этапа обследования объекта моделирования является подготовка содержательной постановки задачи моделирования.

Перечень сформулированных в содержательной (словесной) форме основных интересующих вопросов об объекте моделирования составляет содержательную постановку задачи моделирования.

Этап обследования включает следующие работы:

тщательное обследование собственно объекта моделирования с целью выявления основных факторов, механизмов, влияющих на его поведение, определения соответствующих параметров, позволяющих описывать моделируемый объект;

сбор и проверка имеющихся экспериментальных данных об объектах-аналогах, проведение при необходимости дополнительных экспериментов;

аналитический обзор литературных источников, анализ и сравнение между собой построенных ранее моделей данного объекта (или подобных рассматриваемому объекту);

анализ и обобщение всего накопленного материала, разработка общего плана создания математической модели.

Весь собранный в результате обследования материал о накопленных к данному моменту знаниях об объекте, содержательная постановка задачи моделирования, дополнительные требования к реализации модели и представлению результатов оформляются в виде технического задания на проектирование и разработку модели .

Разработать математическую модель, позволяющую описать полет баскетбольного мяча, брошенного игроком в баскетбольную корзину.

Модель должна позволять:

вычислять положение мяча в любой момент времени;

определять точность попадания мяча в корзину после броска при различных начальных параметрах.

Исходные данные:

масса и радиус мяча;

начальные координаты, начальная скорость и угол броска мяча;

координаты центра и радиус корзины.

2.2. КОНЦЕПТУАЛЬНАЯ ПОСТАНОВКА ЗАДАЧИ МОДЕЛИРОВАНИЯ

Концептуальная постановка задачи моделирования - это сформулированный в терминах конкретных дисциплин (физики, химии, биологии и т.д.) перечень основных интересующих вопросов, а также совокупность гипотез относительно свойств и поведения объекта моделирования.

Концептуальная модель строится как некоторая идеализированная модель объекта, записанная в терминах конкретных дисциплин. Для этого формулируется совокупность гипотез о поведении объекта, его взаимодействии с окружающей средой, изменении внутренних параметров. Как правило, эти гипотезы правдоподобны, так как для их обоснования могут быть приведены некоторые теоретические доводы и использованы экспериментальные данные, основанные на собранной ранее информации об объекте. Согласно принятым гипотезам определяется множество параметров, описывающих состояние объекта, а также перечень законов, управляющих изменением и взаимосвязью этих параметров между собой.

Пример. Концептуальная постановка задачи о баскетболисте.

Движение баскетбольного мяча может быть описано в соответствии с законами классической механики Ньютона (рис. 2.2).

Примем следующие гипотезы:

объектом моделирования является баскетбольный мяч радиуса ;

движение происходит в поле сил тяжести с постоянным ускорением свободного падения и описывается уравнениями классической механики Ньютона;

движение мяча происходит в одной плоскости, перпендикулярной поверхности Земли и проходящей через точку броска и центр корзины;

пренебрегаем сопротивлением воздуха и возмущениями, вызванными собственным вращением мяча вокруг центра масс.

В соответствии с изложенными гипотезами в качестве параметров движения мяча можно использовать координаты и скорость (ее проекции и ) центра масс мяча. Тогда для определения положения мяча в любой момент времени достаточно найти закон движения центра масс мяча, т.е. зависимость координат и проекций вектора скорости и центра мяча от времени. В качестве оценки точности броска можно рассматривать величину расстояния по горизонтали (вдоль оси )от центра корзины до центра мяча в момент, когда последний пересекает горизонтальную плоскость, проходящую через плоскость кольца корзины.

С учетом вышеизложенного можно сформулировать концептуальную постановку задачи о баскетболисте в следующем виде: определить закон движения материальной точки массой под действием силы тяжести, если известны начальные координаты точки , ее начальная скорость и угол бросания . Центр корзины имеет координаты . Вычислить точность броска , где определяется из условий: , , .

Рассмотрим особенности приведенной в примере концептуальной постановки задачи о баскетболисте.

Первая из перечисленных гипотез особенно важна, так как она выделяет объект моделирования. В данном случае объект можно считать простым. Однако в качестве объекта моделирования можно рассматривать систему «игрок - мяч - кольцо». Требуемая для описания подобной системы модель будет уже намного сложнее, так как игрок в свою очередь представляет сложную биомеханическую систему и его моделирование является сложной задачей. В данной ситуации выбор в качестве объекта моделирования только мяча обоснован, поскольку именно его движение требуется исследовать, а влияние игрока можно учесть достаточно просто через начальные параметры броска.

Гипотеза о том, что мяч можно считать материальной точкой, широко применяется для исследования движений тел в механике. В рассматриваемом случае она оправдана в силу симметрии формы мяча и малости его радиуса по сравнению с характерными расстояниями перемещения мяча. Предполагается, что последний является шаром с одинаковой толщиной стенки.

Гипотезу о применимости в данном случае законов классической механики можно обосновать огромным экспериментальным материалом, связанным с изучением движения тел вблизи поверхности Земли со скоростями много меньше скорости света. Учитывая, что высота полета мяча лежит в пределах 5-10 м, а дальность - 5-20 м, предположение о постоянстве ускорения свободного падения также представляется обоснованным. Если бы моделировалось движение баллистической ракеты при дальности и высоте полета более 100 км, то пришлось бы учитывать изменение ускорения свободного падения в зависимости от высоты и широты места.

Гипотеза о движении мяча в плоскости, перпендикулярной поверхности Земли, ограничивает класс рассматриваемых траекторий и значительно упрощает модель. Траектория мяча может не лежать в одной плоскости, если при броске он сильно подкручивается вокруг вертикальной оси. В этом случае скорости точек поверхности мяча относительно воздуха на различных сторонах мяча будут различны. Для точек, движущихся навстречу потоку, относительная скорость выше, а для точек противоположной стороны, движущихся по потоку, - ниже скорости центра масс мяча. В соответствии с законом Бернулли, давление газа на поверхность больше там, где его относительная скорость меньше. Поэтому для ситуации, изображенной на рис. 2.3, на мяч будет действовать дополнительная сила, направленная (для данной схемы) сверху вниз. Этот эффект будет проявляться тем больше, чем больше скорость центра масс мяча и скорость его вращения. Для баскетбола характерны относительно низкие скорости полета мяча (до 10 м/с). При этом довольно редко используется подкрутка мяча рукой. Поэтому гипотеза о движении мяча в одной плоскости кажется оправданной. Ее использование позволяет отказаться от построения значительно более сложной трехмерной модели движения мяча.

Гипотеза об отсутствии влияния сопротивления воздуха наименее обоснована. При движении тела в газе или жидкости сила сопротивления увеличивается с ростом скорости движения. Учитывая невысокие скорости движения мяча, его правильную обтекаемую форму и малые дальности бросков, указанная гипотеза может быть принята в качестве первого приближения.

Следует отметить, что концептуальная постановка задачи моделирования в отличие от содержательной постановки использует терминологию конкретной дисциплины (в рассматриваемом случае - механики). При этом моделируемый реальный объект (мяч) заменяется его механической моделью (материальной точкой). Фактически в приведенном примере концептуальная постановка свелась к постановке классической задачи механики о движении материальной точки в поле сил тяжести. Концептуальная постановка более абстрактна по отношению к содержательной, так как материальной точке можно сопоставить произвольный материальный объект, брошенный под углом к горизонту: футбольный мяч, ядро, камень или артиллерийский снаряд.

2.3. МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ МОДЕЛИРОВАНИЯ

Законченная концептуальная постановка позволяет сформулировать математическую постановку задачи моделирования, включающую совокупность различных математических соотношений, описывающих поведение и свойства объекта моделирования.

Математическая постановка задачи моделирования - это совокупность математических соотношений, описывающих поведение и свойства объекта моделирования.

Совокупность математических соотношений определяет вид оператора модели. Наиболее простым будет оператор модели в случае, если он представлен системой алгебраических уравнений. Подобные модели можно назвать моделями аппроксимационного типа , так как для их получения часто используют различные методы аппроксимации имеющихся экспериментальных данных о поведении выходных параметров объекта моделирования в зависимости от входных параметров и воздействий внешней среды, а также от значений внутренних параметров объекта.

Однако область применения моделей подобного типа ограничена. Для создания математических моделей сложных систем и процессов, применимых для широкого класса реальных задач требуется, как уже отмечалось выше, привлечение большого объема знаний, накопленных в рассматриваемой дисциплине (а в некоторых случаях и в смежных областях). В большинстве дисциплин (особенно естественно-научных) эти знания сконцентрированы в аксиомах, законах, теоремах, имеющих четкую математическую формулировку.

Следует отметить, что во многих областях знаний (механике, физике, биологии и т.д.) принято выделять законы, справедливые для всех объектов исследования данной области знаний, и соотношения, описывающие поведение отдельных объектов или их совокупностей. К числу первых в физике и механике относятся, например, уравнения баланса массы, количества движения, энергии и т.д., справедливые при определенных условиях для любых материальных тел, независимо от их конкретного строения, структуры, состояния, химического состава. Уравнения этого класса подтверждены огромным количеством экспериментов, хорошо изучены и в силу этого применяются в соответствующих математических моделях как данность. Соотношения второго класса в физике и механике называют определяющими, или физическими уравнениями, или уравнениями состояния. Они устанавливают особенности поведения материальных объектов или их совокупностей (например, жидкостей, газов, упругих или пластических сред и т.д.) при воздействиях различных внешних факторов.

Соотношения второго класса гораздо менее изучены, а в ряде случаев их приходится устанавливать самому исследователю (особенно при анализе объектов, состоящих из новых материалов). Необходимо отметить, что определяющие соотношения - это основной элемент любой математической модели физико-механических процессов. Именно ошибки в выборе или установлении определяющих соотношений приводят к количественно (а иногда и качественно) неверным результатам моделирования.

Совокупность математических соотношений указанных двух классов определяет оператор модели. В большинстве случаев оператор модели включает в себя систему обыкновенных дифференциальных уравнений (ОДУ), дифференциальных уравнений в частных производных (ДУЧП) и/или интегродифференциальных уравнений (ИДУ). Для обеспечения корректности постановки задачи к системе ОДУ или ДУЧП добавляются начальные или граничные условия, которые, в свою очередь, могут быть алгебраическими или дифференциальными соотношениями различного порядка.

Можно выделить несколько наиболее распространенных типов задач для систем ОДУ или ДУЧП:

задача Коши, или задача с начальными условиями, в которой по заданным в начальный момент времени переменным (начальным условиям) определяются значения этих искомых переменных для любого момента времени;

начально-граничная, или краевая, задача, когда условия на искомую функцию выходного параметра задаются в начальный момент времени для всей пространственной области и на границе последней в каждый момент времени (на исследуемом интервале);

задачи на собственные значения, в формулировку которых входят неопределенные параметры, определяемые из условия качественного изменения поведения системы (например, потеря устойчивости состояния равновесия или стационарного движения, появление периодического режима, резонанс и т.д.).

Для контроля правильности полученной системы математических соотношений требуется проведение ряда обязательных проверок:

Контроль размерностей, включающий правило, согласно которому приравниваться и складываться могут только величины одинаковой размерности. При переходе к вычислениям данная проверка сочетается с контролем использования одной и той же системы единиц для значений всех параметров.

Контроль порядков, состоящий из грубой оценки сравнительных порядков складываемых величин и исключением малозначимых параметров. Например, если для выражения в результате оценки установлено, что в рассматриваемой области значений параметров модели и третьим слагаемым в исходном выражении можно пренебречь.

Контроль характера зависимостей заключается в проверке того, что направление и скорость изменения выходных параметров модели, вытекающие из выписанных математических соотношений, такие, как это следует непосредственно из «физического» смысла изучаемой модели.

Контроль экстремальных ситуаций - проверка того, какой вид принимают математические соотношения, а также результаты моделирования, если параметры модели или их комбинации приближаются к предельно допустимым для них значениям, чаще всего к нулю или бесконечности. В подобных экстремальных ситуациях модель часто упрощается, математические соотношения приобретают более наглядный смысл, упрощается их проверка. Например, в задачах механики деформируемого твердого тела деформация материала в исследуемой области в изотермических условиях возможна лишь при приложении нагрузок, отсутствие же нагрузок должно приводить к отсутствию деформаций.

Контроль граничных условий, включающий проверку того, что граничные условия действительно наложены, что они использованы в процессе построения искомого решения и что значения выходных параметров модели на самом деле удовлетворяют данным условиям.

Контроль физического смысла - проверка физического или иного, в зависимости от характера задачи, смысла исходных и промежуточных соотношений, появляющихся по мере конструирования модели.

Контроль математической замкнутости, состоящий в проверке того, что выписанная система математических соотношений дает возможность, притом однозначно, решить поставленную математическую задачу. Например, если задача свелась к отысканию неизвестных из некоторой системы алгебраических или трансцендентных уравнений, то контроль замкнутости состоит в проверке того факта, что число независимых уравнений должно быть . Если их меньше и, то надо установить недостающие уравнения, а если их больше я, то либо уравнения зависимы, либо при их составлении допущена ошибка. Однако если уравнения получаются из эксперимента или в результате наблюдений, то возможна постановка задачи, при которой число уравнений превышает , но сами уравнения удовлетворяются лишь приближенно, а решение ищется, например, по методу наименьших квадратов. Неравенств среди условий также может быть любое число, как это бывает, например, в задачах линейного программирования.

Свойство математической замкнутости системы математических соотношений тесно связано понятием корректно поставленной математической задачи, т.е. задачи, для которой решение существует, оно единственно и непрерывно зависит от исходных данных. В данном случае решение считается непрерывным, если малому изменению исходных данных соответствует достаточно малое изменение решения.

Понятие корректности задачи имеет большое значение в прикладной математике. Например, численные методы решения оправдано применять лишь к корректно поставленным задачам. При этом далеко не все задачи, возникающие на практике, можно считать корректными (например, так называемые обратные задачи). Доказательство корректности конкретной математической задачи - достаточно сложная проблема, она решена только для некоторого класса математически поставленных задач. Проверка математической замкнутости является менее сложной по сравнению с проверкой корректности математической постановки. В настоящее время активно исследуются свойства некорректных задач, разрабатываются методы их решения. Аналогично понятию «корректно поставленная задача» можно ввести понятие «корректная математическая модель».

Математическая модель является корректной, если для нее осуществлен и получен положительный результат всех контрольных проверок: размерности, порядков, характера зависимостей, экстремальных ситуаций, граничных условий, физического смысла и математической замкнутости.

Пример. Математическая постановка задачи о баскетболисте.

Математическую постановку задачи о баскетболисте можно представить как в векторной, так и в координатной форме (рис. 2.4).

1. Векторная форма.

Найти зависимости векторных параметров от времени - и - из решения системы обыкновенных дифференциальных уравнений

,

при начальных условиях

,

Вычислить параметр по формуле

где определить из следующих условий:

, , ,

Проецируя векторные соотношения - на оси координат, получим математическую постановку задачи о баскетболисте в координатной форме.

2. Координатная форма.

Найти зависимости , и , из решения системы диф­ференциальных уравнений:

, , , ,

при следующих начальных условиях:

, , ,

Вычислить параметр по формуле

где определить из условий

, ,

Как можно видеть, с математической точки зрения задача о баскетболисте свелась к задаче Коши для системы ОДУ первого порядка с заданными начальными условиями. Полученная система уравнений является замкнутой, так как число независимых уравнений (четыре дифференциальных и два алгебраических) равно числу искомых параметров задачи ( , , , , , ). Выполним контроль размерностей задачи:

уравнение динамики

связь скорости и перемещения

Существование и единственность решения задачи Коши доказана математиками. Поэтому данную математическую модель можно считать корректной.

Математическая постановка задачи еще более абстрактна, чем концептуальная, так как сводит исходную задачу к чисто математической (например, к задаче Коши), методы решения которой достаточно хорошо разработаны. Умение свести исходную проблему к известному классу математических задач и обосновать правомочность такого сведения требует высокой квалификации математика-прикладника и особенно высоко ценится в исследовательских коллективах.

2.4. ВЫБОР И ОБОСНОВАНИЕ ВЫБОРА МЕТОДА РЕШЕНИЯ ЗАДАЧИ

При использовании разработанных математических моделей, как правило, требуется найти зависимость некоторых неизвестных заранее параметров объекта моделирования (например, координат и скорости центра масс тела, точности броска), удовлетворяющих определенной системе уравнений. Таким образом, поиск решения задачи сводится к отысканию некоторых зависимостей искомых величин от исходных параметров модели. Как уже было отмечено ранее, все методы решения задач, составляющих «ядро» математических моделей, можно подразделить на аналитические и алгоритмические.

Следует отметить, что при использовании аналитических решений для получения результатов «в числах» также часто требуется разработка соответствующих алгоритмов, реализуемых на ЭВМ. Однако исходное решение при этом представляет собой аналитическое выражение (или их совокупность). Решения же, основанные на алгоритмических методах, принципиально не сводимы к точным аналитическим решениям рассматриваемой задачи.

Выбор того или иного метода исследования в значительной степени зависит от квалификации и опыта членов рабочей группы. Как уже было отмечено, аналитические методы более удобны для последующего анализа результатов, но применимы лишь для относительно простых моделей. В случае, если математическая задача (хотя бы и в упрощенной постановке) допускает аналитическое решение, последнее, без сомнения, предпочтительнее численного.

Алгоритмические методы сводятся к некоторому алгоритму, реализующему вычислительный эксперимент с использованием ЭВМ. Точность моделирования в подобном эксперименте существенно зависит от выбранного метода и его параметров (например, шага интегрирования). Алгоритмические методы, как правило, более трудоемки в реализации, требуют хорошего знания методов вычислительной математики, обширной библиотеки специального программного обеспечения и вычислительной техники. Современные модели на базе алгоритмических методов разрабатываются в исследовательских организациях, которые зарекомендовали себя как авторитетные научные школы в соответствующей области знания.

Причем численные методы применимы лишь для корректных математических задач, что существенно ограничивает использование их в математическом моделировании.

Общим для всех численных методов является сведение математической задачи к конечномерной. Это чаще всего достигается дискретизацией исходной задачи, т.е. переходом от функции непрерывного аргумента к функциям дискретного аргумента. Например, траектория центра тяжести баскетбольного мяча определяется не как непрерывная функция времени, а как табличная (дискретная) функция координат от времени, т.е. определяющая значения координат лишь для конечного числа моментов времени. Полученное решение дискретной задачи принимается за приближенное решение исходной математической задачи.

Применение любого численного метода неминуемо приводит к погрешности результатов решения задачи. Выделяют три основных составляющих возникающей погрешности при численном решении исходной задачи:

неустранимая погрешность, связанная с неточным заданием исходных данных (начальные и граничные условия, коэффициенты и правые части уравнений);

погрешность метода, связанная с переходом к дискретному аналогу исходной задачи (например, заменяя производную разностным аналогом
, получаем погрешность дискретизации, имеющую при порядок );

ошибка округления, связанная с конечной разрядностью чисел, представляемых в ЭВМ.

Естественным требованием для конкретного вычислительного алгоритма является согласованность в порядках величин перечисленных трех видов погрешностей.

Численный, или приближенный, метод реализуется всегда в виде вычислительного алгоритма. Поэтому все требования, предъявляемые к алгоритму, применимы и к вычислительному алгоритму. Прежде всего, алгоритм должен быть реализуем - обеспечивать решение задачи за допустимое машинное время. Важной характеристикой алгоритма является его точность, т.е. возможность получения решения исходной задачи с заданной точностью за конечное число действий. Очевидно, чем меньше , тем больше затрачиваемое машинное время. Для очень малых значений время вычислений может быть недопустимо большим. Поэтому на практике добиваются некоторого компромисса между точностью и затрачиваемым машинным временем. Очевидно, что для каждой задачи, алгоритма и типа ЭВМ имеется свое характерное значение достигаемой точности.

Время работы алгоритма зависит от числа действий , необходимых для достижения заданной точности. Для любой математической задачи, как правило, можно предложить несколько алгоритмов, позволяющих получить решение с заданной точностью, но за разное число действий . Алгоритмы, включающие меньшее число действий для достижения одинаковой точности, будем называть более экономичными, или более эффективными.

В процессе работы вычислительного алгоритма на каждом акте вычислений возникает некоторая погрешность. При этом от действия к действию она может возрастать или не возрастать (а в некоторых случаях даже уменьшаться). Если погрешность в процессе вычислений неограниченно возрастает, то такой алгоритм называется неустойчивым, или расходящимся. В противном случае алгоритм называется устойчивым, или сходящимся.

Выше уже отмечалось, что вычислительная математика объединяет огромный пласт разнообразных, быстро развивающихся численных и приближенных методов, поэтому практически невозможно привести их законченную классификацию. Стремление получить более точные, эффективные и устойчивые вычислительные алгоритмы приводит к появлению многочисленных модификаций, учитывающих специфические особенности конкретной математической задачи или даже особенности моделируемых объектов.

Можно выделить следующие группы численных методов по объектам, к которым они применяются:

интерполяция и численное дифференцирование;

численное интегрирование;

определение корней линейных и нелинейных уравнений;

решение систем линейных уравнений (подразделяют на прямые и итерационные методы);

решение систем нелинейных уравнений;

решение задачи Коши для обыкновенных дифференциальных уравнений;

решение краевых задач для обыкновенных дифференциальных уравнений;

решение уравнений в частных производных;

решение интегральных уравнений.

Огромное разнообразие численных методов в значительной степени затрудняет выбор того или иного метода в каждом конкретном случае. Поскольку для реализации одной и той же модели можно использовать несколько альтернативных алгоритмических методов, то выбор конкретного метода производится с учетом того, какой из них больше подходит для данной модели с точки зрения обеспечения эффективности, устойчивости и точности результатов, а также более освоен и знаком членам рабочей группы. Освоение нового метода, как правило, очень трудоемко и связано с большими временными и финансовыми затратами. При этом основные затраты связаны с разработкой и отладкой необходимого программного обеспечения для соответствующего класса ЭВМ, обеспечивающего реализацию данного метода.

Следует отметить, что вычислительная математика в определенном смысле являет собой более искусство, нежели науку (в понимании последней как области культуры, базирующейся на формальной логике). Очень часто эффективность применяемых методов, разработанных программ определяется нарабатываемыми годами и десятками лет интуитивными приемами, не обоснованными с математических позиций. В связи с этим эффективность одного и того же метода может весьма существенно отличаться при его применении различными исследователями.

Пример. Аналитическое решение задачи о баскетболисте.

Константы интегрирования найдем из начальных условий (2.6). Тогда решение задачи можно записать следующим образом:

,
, , (2.9)

Для получения решения рассмотренной выше задачи о баскетболисте можно использовать как аналитические, так и численные методы. Проинтегрировав соотношения записанные на прошлой паре по времени, получим

, , , , (2.10)

Примем для простоты, что в момент броска мяч находится в начале координат и на одном уровне с корзиной (т.е. ). Под дальностью броска будем понимать расстояние вдоль оси , которое пролетит мяч от точки броска до пересечения с горизонтальной плоскостью, проходящей через кольцо корзины. Из соотношений (2.10) дальность броска выразится следующим образом:

(2,11)

С учетом (2.7) точность броска

(2.12)

Например, при броске мяча со штрафной линии можно принять следующие исходные данные: ; м; м/с; . Тогда из (2.11) и (2.12) имеем м; м.

Пример . Алгоритмическое решение задачи о баскетболисте.

В простейшем случае можно использовать метод Эйлера. Алгоритм решения данной задачи на псевдокоде приведен ниже.

Алгоритм 2.1

program basket {Задача о баскетболисте};

{Данные : m, R - масса и радиус мяча;

x0, y0 - начальные координаты мяча;

v0, a0 - начальная скорость и угол броска мяча;

xk, yk - координаты центра корзины;

t - текущее время;

dt - шаг по времени;

fx, fy - силы, действующие на мяч;

x, y, vx, vy - текущие координаты и проекции скорости мяча.

Результаты : L и D - дальность и точность броска.}

m:=0.6; R:=0.12;

v0:=6.44; a0:=45;

Понятие модели и моделирования.

Модель в широком смысле - это любой образ, аналог мысленный или установленный изображение, описание, схема, чертеж, карта и т. п. какого либо объема, процесса или явления, используемый в качестве его заменителя или представителя. Сам объект, процесс или явление называется оригиналом данной модели.

Моделирование - это исследование какого либо объекта или системы объектов путем построения и изучения их моделей. Это использование моделей для определения или уточнения характеристик и рационализации способов построения вновь конструируемых объектов.

На идее моделирования базируется любой метод научного исследования, при этом, в теоретических методах используются различного рода знаковые, абстрактные модели, в экспериментальных - предметные модели.

При исследовании сложное реальное явление заменяется некоторой упрощенной копией или схемой, иногда такая копия служит лишь только для того чтобы запомнить и при следующей встрече узнать нужное явление. Иногда построенная схема отражает какие - то существенные черты, позволяет разобраться в механизме явления, дает возможность предсказать его изменение. Одному и тому же явлению могут соответствовать разные модели.

Задача исследователя - предсказывать характер явления и ход процесса.

Иногда, бывает, что объект доступен, но эксперименты с ним дорогостоящи или привести к серьезным экологическим последствиям. Знания о таких процессах получают с помощью моделей.

Важный момент - сам характер науки предполагает изучение не одного конкретного явления, а широкого класса родственных явлений. Предполагает необходимость формулировки каких - то общих категорических утверждений, которые называются законами. Естественно, что при такой формулировке многими подробностями пренебрегают. Чтобы более четко выявить закономерность сознательно идут на огрубление, идеализацию, схематичность, то есть изучают не само явление, а более или менее точную ее копию или модель. Все законы- это законы о моделях, а поэтому нет ничего удивительного в том, что с течением времени некоторые научные теории признаются непригодными. Это не приводит к краху науки, поскольку одна модель заменилась другой более современной .

Особую роль в науке играют математические модели, строительный материал и инструменты этих моделей - математические понятия. Они накапливались и совершенствовались в течении тысячелетий. Современная математика дает исключительно мощные и универсальные средства исследования. Практически каждое понятие в математике, каждый математический объект, начиная от понятия числа, является математической моделью. При построении математической модели, изучаемого объекта или явления выделяют те его особенности, черты и детали, которые с одной стороны содержат более или менее полную информацию об объекте, а с другой допускают математическую формализацию. Математическая формализация означает, что особенностям и деталям объекта можно поставить в соответствие подходящие адекватные математические понятия: числа, функции, матрицы и так далее. Тогда связи и отношения, обнаруженные и предполагаемые в изучаемом объекте между отдельными его деталями и составными частями можно записать с помощью математических отношений: равенств, неравенств, уравнений. В результате получается математическое описание изучаемого процесса или явление, то есть его математическая модель.

Изучение математической модели всегда связанно с некоторыми правилами действия над изучаемыми объектами. Эти правила отражают связи между причинами и следствиями.

Построение математической модели - это центральный этап исследования или проектирования любой системы. От качества модели зависит весь последующий анализ объекта. Построение модели - это процедура не формальная. Сильно зависит от исследователя, его опыта и вкуса, всегда опирается на определенный опытный материал. Модель должна быть достаточно точной, адекватной и должна быть удобна для использования.

Математическое моделирование.

Классификация математических моделей.

Математические модели могут быть детерменированными и стохастическими .

Детерменированные модели- это модели, в которых установлено взаимно-однозначное соответствие между переменными описывающими объект или явления.

Такой подход основан на знании механизма функционирования объектов. Часто моделируемый объект сложен и расшифровка его механизма может оказаться очень трудоемкой и длинной во времени. В этом случае поступают следующим образом: на оригинале проводят эксперименты, обрабатывают полученные результаты и, не вникая в механизм и теорию моделируемого объекта с помощью методов математической статистики и теории вероятности, устанавливают связи между переменными, описывающими объект. В этом случае получают стахостическую модель. В стахостической модели связь между переменными носит случайный характер, иногда это бывает принципиально. Воздействие огромного количества факторов, их сочетание приводит к случайному набору переменных описывающих объект или явление. По характеру режимов модель бывают статистическими и динамическими .

Статистическая модель включает описание связей между основными переменными моделируемого объекта в установившемся режиме без учета изменения параметров во времени.

В динамической модели описываются связи между основными переменными моделируемого объекта при переходе от одного режима к другому.

Модели бывают дискретными и непрерывными , а также смешанного типа. В непрерывных переменные принимают значения из некоторого промежутка, в дискретных переменные принимают изолированные значения.

Линейные модели - все функции и отношения, описывающие модель линейно зависят от переменных и не линейные в противном случае.

Математическое моделирование.

Требования,п редъявляемые к моделям.

1. Универсальность - характеризует полноту отображения моделью изучаемых свойств реального объекта.

    1. Адекватность - способность отражать нужные свойства объекта с погрешностью не выше заданной.
    2. Точность - оценивается степенью совпадения значений характеристик реального объекта и значения этих характеристик полученных с помощью моделей.
    3. Экономичность - определяется затратами ресурсов ЭВМ памяти и времени на ее реализацию и эксплуатацию.

Математическое моделирование.

Основные этапы моделирования.

1. Постановка задачи.

Определение цели анализа и пути ее достижения и выработки общего подхода к исследуемой проблеме. На этом этапе требуется глубокое понимание существа поставленной задачи. Иногда, правильно поставить задачу не менее сложно чем ее решить. Постановка - процесс не формальный, общих правил нет.

2. Изучение теоретических основ и сбор информации об объекте оригинала.

На этом этапе подбирается или разрабатывается подходящая теория. Если ее нет, устанавливаются причинно - следственные связи между переменными описывающими объект. Определяются входные и выходные данные, принимаются упрощающие предположения.

3. Формализация.

Заключается в выборе системы условных обозначений и с их помощью записывать отношения между составляющими объекта в виде математических выражений. Устанавливается класс задач, к которым может быть отнесена полученная математическая модель объекта. Значения некоторых параметров на этом этапе еще могут быть не конкретизированы.

4. Выбор метода решения.

На этом этапе устанавливаются окончательные параметры моделей с учетом условия функционирования объекта. Для полученной математической задачи выбирается какой - либо метод решения или разрабатывается специальный метод. При выборе метода учитываются знания пользователя, его предпочтения, а также предпочтения разработчика.

5. Реализация модели.

Разработав алгоритм, пишется программа, которая отлаживается, тестируется и получается решение нужной задачи.

6. Анализ полученной информации.

Сопоставляется полученное и предполагаемое решение, проводится контроль погрешности моделирования.

7. Проверка адекватности реальному объекту.

Результаты, полученные по модели сопоставляются либо с имеющейся об объекте информацией или проводится эксперимент и его результаты сопоставляются с расчётными.

Процесс моделирования является итеративным. В случае неудовлетворительных результатов этапов 6. или 7. осуществляется возврат к одному из ранних этапов, который мог привести к разработке неудачной модели. Этот этап и все последующие уточняются и такое уточнение модели происходит до тех пор, пока не будут получены приемлемые результаты.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

1.1.2 2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

1.1.3 3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ВСЕОБЩАЯ КОМПЬЮТЕРИЗАЦИЯ ИЛИ ИМИТАЦИОННЫЕ МОДЕЛИ

Сейчас, когда в стране происходит чуть ли не всеобщая компьютеризация, от специалистов различных профессий приходится слышать высказывания: "Вот внедрим у себя ЭВМ, тогда все задачи сразу же будут решены". Эта точка зрения совершенно не верна, сами по себе ЭВМ без математических моделей тех или иных процессов ничего сделать не смогут и о всеобщей компьютеризации можно лишь мечтать.

В подтверждение вышесказанного попытаемся обосновать необходимость моделирования, в том числе математического, раскроем его преимущества в познании и преобразовании человеком внешнего мира, выявим существующие недостатки и пойдем… к имитационному моделированию, т.е. моделированию с использованием ЭВМ. Но все по порядку.

Прежде всего, ответим на вопрос: что такое модель?

Модель – это материальный или мысленно представленный объект, который в процессе познания (изучения) замещает оригинал, сохраняя некоторые важные для данного исследования типичные свойства.

Хорошо построенная модель доступнее для исследования – нежели реальный объект. Например, недопустимы эксперименты с экономикой страны в познавательных целях, здесь без модели не обойтись.

Резюмируя сказанное можно ответить на вопрос: для чего нужны модели? Для того, чтобы

  • понять, как устроен объект (его структура, свойства, законы развития, взаимодействия с окружающим миром).
  • научиться управлять объектом (процессом) и определять наилучшие стратегии
  • прогнозировать последствия воздействия на объект.

Что положительного в любой модели? Она позволяет получить новые знания об объекте, но, к сожалению, в той или иной степени не полна.

Модель сформулированная на языке математики с использованием математических методов называется математической моделью.

Исходным пунктом ее построения обычно является некоторая задача, например экономическая. Широко распространены, как дескриптивные, так и оптимизационные математические, характеризующие различные экономические процессы и явления, например:

  • распределение ресурсов
  • рациональный раскрой
  • транспортные перевозки
  • укрупнение предприятий
  • сетевое планирование.

Каким образом происходит построение математической модели?

  • Во–первых , формулируется цель и предмет исследования.
  • Во–вторых , выделяются наиболее важные характеристики, соответствующие данной цели.
  • В–третьих, словесно описываются взаимосвязи между элементами модели.
  • Далее взаимосвязь формализуется.
  • И производится расчет по математической модели и анализ полученного решения.

Используя данный алгоритм можно решить любую оптимизационную задачу, в том числе и многокритериальную, т.е. ту в которой преследуется не одна, а несколько целей, в том числе противоречивых.

Приведем пример. Теория массового обслуживания – проблема образования очередей. Нужно уравновесить два фактора – затраты на содержание обслуживающих устройств и затраты на пребывание в очереди. Построив формальное описание модели производят расчеты, используя аналитические и вычислительные методы. Если модель хороша, то ответы найденные с ее помощью адекватны моделирующей системе, если плоха, то подлежит улучшению и замене. Критерием адекватности служит практика.

Оптимизационные модели, в том числе многокритериальные, имеют общее свойство– из вестна цель(или несколько целей) для достижения которой часто приходится иметь дело со сложными системами, где речь идет не столько о решении оптимизационных задач, сколько об исследовании и прогнозировании состояний в зависимости от избираемых стратегий управления. И здесь мы сталкиваемся с трудностями реализации прежнего плана. Они состоят в следующем:

  • сложная система содержит много связей между элементами
  • реальная система подвергается влиянию случайных факторов, учет их аналитическим путем невозможен
  • возможность сопоставления оригинала с моделью существует лишь в начале и после применения математического аппарата, т.к. промежуточные результаты могут не иметь аналогов в реальной системе.

В связи с перечисленными трудностями, возникающими при изучении сложных систем, практика потребовала более гибкий метод, и он появился – имитационное моделирование "Simujation modeling ".

Обычно под имитационной моделью понимается комплекс программ для ЭВМ, описывающий функционирование отдельных блоков систем и правил взаимодействия между ними. Использование случайных величин делает необходимым многократное проведение экспериментов с имитационной системой (на ЭВМ) и последующий статистический анализ полученных результатов. Весьма распространенным примером использования имитационных моделей является решение задачи массового обслуживания методом МОНТЕ–КАРЛО.

Таким образом, работа с имитационной системой представляет собой эксперимент, осуществляемый на ЭВМ. В чем же заключаются преимущества?

–Большая близость к реальной системе, чем у математических моделей;

–Блочный принцип дает возможность верифицировать каждый блок до его включения в общую систему;

–Использование зависимостей более сложного характера, не описываемых простыми математическими соотношениями.

Перечисленные достоинства определяют недостатки

–построить имитационную модель дольше, труднее и дороже;

–для работы с имитационной системой необходимо наличие подходящей по классу ЭВМ;

–взаимодействие пользователя и имитационной модели (интерфейс) должно быть не слишком сложным, удобным и хорошо известным;

–построение имитационной модели требует более глубокого изучения реального процесса, нежели математическое моделирование.

Встает вопрос: может ли имитационное моделирование заменить методы оптимизации? Нет, но удобно дополняет их. Имитационная модель – это программа, реализующая некоторый алгоритм, для оптимизации управления которым прежде решается оптимизационная задача.

Итак, ни ЭВМ, ни математическая модель, ни алгоритм для ее исследования порознь не могут решить достаточно сложную задачу. Но вместе они представляют ту силу, которая позволяет познавать окружающий мир, управлять им в интересах человека.

1.2 Классификация моделей

1.2.1
Классификация с учетом фактора времени и области использования (Макарова Н.А.)

Статическая модель - это как бы одномоментный срез информации по объекту (результат одного обследования)
Динамическая модель-позволяет увидеть изменения объекта во времени(Карточка в поликлинике)
Можно классифицировать модели и по тому, к какой области знаний они принадлежат (биологические,исторические , экологические и т.п.)
Возврат в начало

1.2.2 Классификация по области использования (Макарова Н.А.)

Учебные- наглядные пособия, тренажеры,о бучающие программы
Опытные модели-уменьшенные копии (автомобиль в аэродинамической трубе)
Научно-технические- синхрофазотрон , стенд для проверки электронной аппаратуры
Игровые- экономические , спортивные, деловые игры
Имитационные- не просто отражают реальность, но имитируют ее(на мышах испытываеется лекарство, в школах проводятся эксперементы и т.п. .Такой метод моделирования называется методом проб и ошибок
Возврат в начало

1.2.3 Классификация по способу представления Макарова Н.А.)

Материальные модели-иначе можно назвать предметными. Они воспринимают геометрические и физические свойства оригинала и всегда имеют реальное воплощение
Информационные модели-нельзя потрогать или увидеть. Они строятся только на информации.И нформационная модель совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром.
Вербальная модель - информационная модель в мысленной или разговорной форме.
Знаковая модель-информационная модель выраженная знаками,т .е . средствами любого формального языка.
Компьютерная модель -м одель, реализованная средствами программной среды.

1.2.4 Классификация моделей, приведенная в книге "Земля Информатика" (Гейн А.Г.))

"...вот нехитрая на первый взгляд задача: сколько потребуется времени, чтобы пересечь пустыню Каракумы? Ответ,разумеется зависит от способа передвижения. Если путешествоватьна верблюдах , то потребуется один срок, другой-если ехать на автомобиле, третий - если лететь самолетом. А самое главное - для планирования путешествия требуются разные модели. Для первого случая требуемую модель можно найти в мемуарах знаменитых исследователей пустынь: ведь здесь не обойтись без информации об оазисах и верблюжьих тропах. Во втором случае незаменимая информация, содержащаяся в атласе автомобильных дорог. В третьем - можно воспользоваться расписанием самолетных рейсов.
Отличаются эти три модели - мемуары, атлас и расписание и характером предьявления информации. В первом случае модель представлена словесным описанием информации (описательная модель) , во втором- как бы фотографией с натуры (натурная модель) , в третьем - таблицей содержащей условные обозначения: время вылета и прилета, день недели, цена билета (так называемая знаковая модель) Впрочем это деление весьма условно- в мемуарах могут встретиться карты и схемы (элементы натурной модели), на картах имеются условные обозначения (элементы знаковой модели), в расписании приводится расшифровка условных обозначений (элементы описательной модели). Так что эта классификация моделей... на наш взгля малопродуктивна"
На мой взгляд этот фрагмент демонстрирует общий для всех книг Гейна описательный (замечательный язык и стиль изложения) и как бы, сократовский стиль обучения (Все считают что это вот так. Я совершенно согласен с вами, но если приглядеться, то...). В таких книгах достаточно сложно найти четкую систему определений (она и не предполагается автором). В учебнике под редакцией Н.А. Макаровой демонстрируется другой подход - определения понятий четко выделены и несколько статичны.

1.2.5 Классификация моделей приведенная в пособии А.И.Бочкина

Способов классификации необычно много.П риведем лишь некоторые, наиболее известные основания и признаки:дискретность и непрерывность,матричные и скалярные модели, статические и динамические модели, аналитические и информационные модели, предметные и образно-знаковые модели, масштабные и немасштабные...
Каждый признак даетопределенное знание о свойствах и модели, и моделируемой реальности. Признак может служить подсказкой о способе выполненного или предстоящего моделирования.
Дискретность и непрерывностьДискретность - характерный признак именно компьютерных моделей.В едь компьютер может находиться в конечном, хотя и очень большом количестве состояний. Поэтому даже если объект непрерывен (время), в модели он будет изменяться скачками. Можно считать непрерывность признаком моделей некомпьютерного типа.
Случайность и детерминированность . Неопределенность, случайность изначально противостоит компьютерному миру: Запущенный вновь алгоритм должен повториться и дать те же результаты. Но для имитации случайных процессов используют датчики псевдослучайных чисел. Введение случайности в детерминированные задачи приводит к мощным и интересным моделям (Вычисление площади методом случайных бросаний).
Матричность - скалярность . Наличие параметров у матричной модели говорит о ее большей сложности и, возможно, точности по сравнению со скалярной . Например, если не выделить в населении страны все возрастные группы, рассматривая его изменение как целое, получим скалярную модель (например модель Мальтуса), если выделить, - матричную (половозрастную). Именно матричная модель позволила объяснить колебания рождаемости после войны.
Статичность динамичность . Эти свойства модели обычно предопределяются свойствами реального объекта. Здесь нет свободы выбора. Просто статическая модель может быть шагом к динамической , либо часть переменных модели может считаться пока неизменной. Например, спутник движется вокруг Земли, на его движение влияет Луна. Если считать Луну неподвижной за время оборота спутника, получим более простую модель.
Аналитические модели . Описание процессов аналитически , формулами и уравнениями. Но при попытке построить график удобнее иметь таблицы значений функции и аргументов.
Имитационные модели . Имитационные модели появились давно в виде масштабных копий кораблей, мостов и пр. появились давно, но в связи с компьютерами рассматриваются недавно. Зная как связаны элементы модели аналитически и логически, проще не решать систему неких соотношений и уравнений, а отобразить реальную систему в память компьютера, с учетом связей между элементами памяти.
Информационные модели . Информационные модели принято противополагать математическим , точнее алгоритмическим. Здесь важно соотношение объемов данные/алгоритмы. Если данных больше или они важнее имеем информационную модель, иначе - математичеескую .
Предметные модели . Это прежде всего детская модель - игрушка.
Образно-знаковые модели . Это прежде всего модель в уме человека: образная , если преобладают графические образы, и знаковая , если больше слов или (и) чисел. Образно-знаковые модели строятся на компьютере.
Масштабные модели . К масштабным моделям те из предметных или образных моделей, которые повторяют форму объекта (карта).