Образование базиса векторами. Линейная зависимость векторов. Базис системы векторов. Связь между базисами

Линейной комбинацией векторов называется вектор
, где λ 1 , ... , λ m – произвольные коэффициенты.

Система векторов
называется линейно зависимой, если существует ее линейная комбинация, равная, в которой есть хотя бы один ненулевой коэффициент.

Система векторов
называется линейно независимой, если в любой ее линейной комбинации, равной, все коэффициенты нулевые.

Базисом системы векторов
называется ее непустая линейно независимая подсистема, через которую можно выразить любой вектор системы.

П р и м е р 2. Найти базис системы векторов= (1, 2, 2, 4),= (2, 3, 5, 1),= (3, 4, 8, -2),= (2, 5, 0, 3) и выразить остальные векторы через базис.

Р е ш е н и е. Строим матрицу, в которой координаты данных векторов располагаем по столбцам. Приводим ее к ступенчатому виду.

~
~
~
.

Базис данной системы образуют векторы ,,, которым соответствуют ведущие элементы строк, выделенные кружками. Для выражения векторарешаем уравнениеx 1 +x 2 + x 4 =. Оно сводится к системе линейных уравнений, матрица которой получается из исходной перестановкой столбца, соответствующего, на место столбца свободных членов. Поэтому для решения системы используем полученную матрицу в ступенчатом виде, сделав в ней необходимые перестановки.

Последовательно находим:

x 1 + 4 = 3, x 1 = -1;

= -+2.

Замечание 1. Если требуется выразить через базис несколько векторов, то для каждого из них строится соответствующая система линейных уравнений. Эти системы будут отличаться только столбцами свободных членов. Поэтому для их решения можно составить одну матрицу, в которой будет несколько столбцов свободных членов. При этом каждая система решается независимо от остальных.

Замечание 2. Для выражения любого вектора достаточно использовать только базисные векторы системы, стоящие перед ним. При этом нет необходимости переформировывать матрицу, достаточно поставить вертикальную черту в нужном месте.

У п р а ж н е н и е 2. Найти базис системы векторов и выразить остальные векторы через базис:

а) = (1, 3, 2, 0),= (3, 4, 2, 1),= (1, -2, -2, 1),= (3, 5, 1, 2);

б) = (2, 1, 2, 3),= (1, 2, 2, 3),= (3, -1, 2, 2),= (4, -2, 2, 2);

в) = (1, 2, 3),= (2, 4, 3),= (3, 6, 6),= (4, -2, 1);= (2, -6, -2).

    1. 3. Фундаментальная система решений

Система линейных уравнений называется однородной, если все ее свободные члены равны нулю.

Фундаментальной системой решений однородной системы линейных уравнений называется базис множества ее решений.

Пусть дана неоднородная система линейных уравнений. Однородной системой, ассоциированной с данной, называется система, полученная из данной заменой всех свободных членов на нули.

Если неоднородная система совместна и неопределенна, то ее произвольное решение имеет вид f н +  1 f о1 + ... +  k f о k ,гдеf н – частное решение неоднородной системы иf о1 , ... , f о k – фундаментальная система решений ассоциированной однородной системы.

П р и м е р 3. Найти частное решение неоднородной системы из примера 1 и фундаментальную систему решений ассоциированной однородной системы.

Р е ш е н и е. Запишем решение, полученное в примере 1, в векторном виде и разложим получившийся вектор в сумму по свободным параметрам, имеющимся в нем, и фиксированным числовым значениям:

= (x 1 , x 2 , x 3 , x 4) = (–2a + 7b – 2, a, –2b + 1, b) = (–2a, a, 0, 0) + (7b, 0, –2b, b) + +(– 2, 0, 1, 0) = a(-2, 1, 0, 0) + b(7, 0, -2, 1) + (– 2, 0, 1, 0).

­­ Получаемf н =(– 2, 0, 1, 0), f о1 = (-2, 1, 0, 0), f о2 = (7, 0, -2, 1).

Замечание. Аналогично решается задача нахождения фундаментальной системы решений однородной системы.

У п р а ж н е н и е 3.1 Найти фундаментальную систему решений однородной системы:

а)

б)

в) 2x 1 – x 2 +3x 3 = 0.

У п р а ж н е н и е 3.2. Найти частное решение неоднородной системы и фундаментальную систему решений ассоциированной однородной системы:

а)

б)

В геометрии вектор понимается как направленный отрезок, причем векторы, полученные один из другого параллельным переносом, считаются равными. Все равные векторы рассматриваются как один и тот же вектор. Начало вектора можно поместить в любую точку пространства или плоскости.

Если в пространстве заданы координаты концов вектора : A (x 1 , y 1 , z 1), B (x 2 , y 2 , z 2), то

= (x 2 – x 1 , y 2 – y 1 , z 2 – z 1). (1)

Аналогичная формула имеет место на плоскости. Это значит, что вектор можно записать в виде координатной строки. Операции над векторами, – сложение и умножение на число, над строками выполняются покомпонентно. Это дает возможность расширить понятие вектора, понимая под вектором любую строку чисел. Например, решение системы линейных уравнений, а также любой набор значений переменных системы, можно рассматривать как вектор.

Над строками одинаковой длины операция сложения выполняется по правилу

(a 1 , a 2 , … , a n ) + (b 1 , b 2 , … , b n ) = (a 1 + b 1 , a 2 + b 2 , … , a n + b n ). (2)

Умножение строки на число выполняется по правилу

l(a 1 , a 2 , … , a n ) = (la 1 , la 2 , … , la n ). (3)

Множество векторов-строк заданной длины n с указанными операциями сложения векторов и умножения на число образует алгебраическую структуру, которая называется n-мерным линейным пространством .

Линейной комбинацией векторов называется вектор , где λ 1 , ... , λ m – произвольные коэффициенты.

Система векторов называется линейно зависимой, если существует ее линейная комбинация, равная , в которой есть хотя бы один ненулевой коэффициент.

Система векторов называется линейно независимой, если в любой ее линейной комбинации, равной , все коэффициенты нулевые.

Таким образом, решение вопроса о линейной зависимости системы векторов сводится к решению уравнения

x 1 + x 2 + … + x m = . (4)

Если у этого уравнения есть ненулевые решения, то система векторов линейно зависима. Если же нулевое решение является единственным, то система векторов линейно независима.

Для решения системы (4) можно для наглядности векторы записать не в виде строк, а в виде столбцов.

Тогда, выполнив преобразования в левой части, придем к системе линейных уравнений, равносильной уравнению (4). Основная матрица этой системы образована координатами исходных векторов, расположенных по столбцам. Столбец свободных членов здесь не нужен, так как система однородная.

Базисом системы векторов (конечной или бесконечной, в частности, всего линейного пространства) называется ее непустая линейно независимая подсистема, через которую можно выразить любой вектор системы.

Пример 1.5.2. Найти базис системы векторов = (1, 2, 2, 4), = (2, 3, 5, 1), = (3, 4, 8, –2), = (2, 5, 0, 3) и выразить остальные векторы через базис.

Решение . Строим матрицу, в которой координаты данных векторов располагаем по столбцам. Это матрица системы x 1 + x 2 + x 3 + x 4 =. . Приводим матрицу к ступенчатому виду:

~ ~ ~

Базис данной системы векторов образуют векторы , , , которым соответствуют ведущие элементы строк, выделенные кружками. Для выражения вектора решаем уравнение x 1 + x 2 + x 4 = . Оно сводится к системе линейных уравнений, матрица которой получается из исходной перестановкой столбца, соответствующего , на место столбца свободных членов. Поэтому при приведении к ступенчатому виду над матрицей будут сделаны те же преобразования, что выше. Значит, можно использовать полученную матрицу в ступенчатом виде, сделав в ней необходимые перестановки столбцов: столбцы с кружками помещаем слева от вертикальной черты, а столбец, соответствующий вектору , помещаем справа от черты.

Последовательно находим:

x 4 = 0;

x 2 = 2;

x 1 + 4 = 3, x 1 = –1;

Замечание . Если требуется выразить через базис несколько векторов, то для каждого из них строится соответствующая система линейных уравнений. Эти системы будут отличаться только столбцами свободных членов. При этом каждая система решается независимо от остальных.

У п р а ж н е н и е 1.4. Найти базис системы векторов и выразить остальные векторы через базис:

а) = (1, 3, 2, 0), = (3, 4, 2, 1), = (1, –2, –2, 1), = (3, 5, 1, 2);

б) = (2, 1, 2, 3), = (1, 2, 2, 3), = (3, –1, 2, 2), = (4, –2, 2, 2);

в) = (1, 2, 3), = (2, 4, 3), = (3, 6, 6), = (4, –2, 1); = (2, –6, –2).

В заданной системе векторов базис обычно можно выделить разными способами, но во всех базисах будет одинаковое число векторов. Число векторов в базисе линейного пространства называется размерностью пространства. Для n -мерного линейного пространства n – это размерность пространства, так как это пространство имеет стандартный базис = (1, 0, … , 0), = (0, 1, … , 0), … , = (0, 0, … , 1). Через этот базис любой вектор = (a 1 , a 2 , … , a n ) выражается следующим образом:

= (a 1 , 0, … , 0) + (0, a 2 , … , 0) + … + (0, 0, … , a n ) =

A 1 (1, 0, … , 0) + a 2 (0, 1, … , 0) + … + a n (0, 0, … ,1) = a 1 + a 2 +… + a n .

Таким образом, компоненты в строке вектора = (a 1 , a 2 , … , a n ) – это его коэффициенты в разложении через стандартный базис.

Прямые на плоскости

Задача аналитической геометрии – применение к геометрическим задачам координатного метода. Тем самым задача переводится в алгебраическую форму и решается средствами алгебры.

Найти базис системы векторов и векторы, не входящие в базис, разложить по базису:

а 1 = {5, 2, -3, 1}, а 2 = {4, 1, -2, 3}, а 3 = {1, 1, -1, -2}, а 4 = {3, 4, -1, 2}, а 5 = {13, 8, -7, 4}.

Р е ш е н и е . Рассмотрим однородную систему линейных уравнений

а 1 х 1 + а 2 х 2 + а 3 х 3 + а 4 х 4 + а 5 х 5 = 0

или в развернутом виде .

Будем решать эту систему методом Гаусса, не меняя местами строки и столбцы, и, кроме того, выбирая главный элемент не в верхнем левом углу, а по всей строке. Задача состоит в том, чтобы выделить диагональную часть преобразованной системы векторов .

~ ~

~ ~ ~ .

Разрешенная система векторов, равносильная исходной, имеет вид

а 1 1 х 1 + а 2 1 х 2 + а 3 1 х 3 + а 4 1 х 4 + а 5 1 х 5 = 0 ,

где а 1 1 = , а 2 1 = , а 3 1 = , а 4 1 = , а 5 1 = . (1)

Векторы а 1 1 , а 3 1 , а 4 1 образуют диагональную систему. Следовательно, векторы а 1 , а 3 , а 4 образуют базис системы векторов а 1 , а 2 , а 3 , а 4 , а 5 .

Разложим теперь векторы а 2 и а 5 по базису а 1 , а 3 , а 4 . Для этого сначала разложим соответствующие векторы а 2 1 и а 5 1 по диагональной системе а 1 1 , а 3 1 , а 4 1 , имея в виду, что коэффициентами разложения вектора по диагональной системе являются его координаты x i .

Из (1) имеем:

а 2 1 = а 3 1 · (-1) + а 4 1 · 0 + а 1 1 ·1 => а 2 1 = а 1 1 – а 3 1 .

а 5 1 = а 3 1 · 0 + а 4 1 · 1 + а 1 1 ·2 => а 5 1 = 2а 1 1 + а 4 1 .

Векторы а 2 и а 5 разлагаются по базису а 1 , а 3 , а 4 с теми же коэффициентами, что и векторы а 2 1 и а 5 1 по диагональной системе а 1 1 , а 3 1 , а 4 1 (те коэффициенты x i ). Следовательно,

а 2 = а 1 – а 3 , а 5 = 2а 1 + а 4 .

Задания. 1 .Найти базис системы векторов и векторы, не входящие в базис, разложить по базису:

1. a 1 = { 1, 2, 1 }, a 2 = { 2, 1, 3 }, a 3 = { 1, 5, 0 }, a 4 = { 2, -2, 4 }.

2. a 1 = { 1, 1, 2 }, a 2 = { 0, 1, 2 }, a 3 = { 2, 1, -4 }, a 4 = { 1, 1, 0 }.

3. a 1 = { 1, -2, 3 }, a 2 = { 0, 1, -1 }, a 3 = { 1, 3, 0 }, a 4 = { 0, -7, 3 }, a 5 = { 1, 1, 1 }.

4. a 1 = { 1, 2, -2 }, a 2 = { 0, -1, 4 }, a 3 = { 2, -3, 3 }.

2. Найти все базисы системы векторов:

1. a 1 = { 1, 1, 2 }, a 2 = { 3, 1, 2 }, a 3 = { 1, 2, 1 }, a 4 = { 2, 1, 2 }.

2. a 1 = { 1, 1, 1 }, a 2 = { -3, -5, 5 }, a 3 = { 3, 4, -1 }, a 4 = { 1, -1, 4 }.

Определение базиса. Система векторов образует базис, если:

1) она линейно-независима,

2) любой вектор пространства через нее линейно выражается.

Пример 1. Базис пространства : .

2. В системе векторов базисом являются векторы: , т.к. линейно выражается через векторы .

Замечание. Чтобы найти базис данной системы векторов необходимо:

1) записать координаты векторов в матрицу,

2) с помощью элементарных преобразований привести матрицу к треугольному виду,

3) ненулевые строки матрицы будут являться базисом системы,

4) количество векторов в базисе равно рангу матрицы.

Теорема Кронекера-Капелли

Теорема Кронеккера–Капелли дает исчерпывающий ответ на вопрос о совместности произвольной системы линейных уравнений с неизвестными

Теорема Кронеккера–Капелли . Система линейных алгебраических урав­нений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу основной матрицы, .

Алгоритм отыскания всех решений совместной системы линейных уравнений вытекает из теоремы Кронеккера–Капелли и следующих теорем.

Теорема. Если ранг совместной системы равен числу неизвестных, то система имеет единственное решение.

Теорема. Если ранг совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений.

Алгоритм решения произвольной системы линейных уравнений:

1. Найдем ранги основной и расширенной матриц системы. Если они не равны (), то система несовместна (не имеет решений). Если ранги равны ( , то система совместна.

2. Для совместной системы найдем какой-нибудь минор, порядок которого определяет ранг матрицы (такой минор называют базисным). Составим новую систему из уравнений, в которых коэффициенты при неизвестных, входят в базисный минор (эти неизвестные называют главными неизвестными), остальные уравнения отбросим. Главные неизвестные с коэффициентами оставим слева, а остальные неизвестных (их называют свободными неизвестными) перенесем в правую часть уравнений.

3. Найдем выражения главных неизвестных через свободные. Получаем общее решение системы.



4. Придавая свободным неизвестным произвольные значения, получим соответствующие значения главных неизвестных. Таким образомнаходим частные решения исходной системы уравнений.

Линейное программирование. Основные понятия

Линейное программирование – это направление математического программирования, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием.

Необходимым условием постановки задачи линейного программирования являются ограничения на наличие ресурсов, величину спроса, производственную мощность предприятия и другие производственные факторы.

Сущность линейного программирования состоит в нахождении точек наибольшего или наименьшего значения некоторой функции при определенном наборе ограничений, налагаемых на аргументы и образующихсистему ограничений , которая имеет, как правило, бесконечное множество решений. Каждая совокупность значений переменных (аргументов функции F ), которые удовлетворяют системе ограничений, называетсядопустимым планом задачи линейного программирования. Функция F , максимум или минимум которой определяется, называется целевой функцией задачи. Допустимый план, на котором достигается максимум или минимум функции F , называется оптимальным планом задачи.

Система ограничений, определяющая множество планов, диктуется условиями производства. Задачей линейного программирования (ЗЛП ) является выбор из множества допустимых планов наиболее выгодного (оптимального).

В общей постановке задача линейного программирования выглядит следующим образом:

Имеются какие-то переменные х = (х 1 , х 2 , … х n) и функция этих переменных f(x) = f (х 1 , х 2 , … х n) , которая носит название целевой функции. Ставится задача: найти экстремум (максимум или минимум) целевой функции f(x) при условии, что переменные x принадлежат некоторой области G :

В зависимости от вида функции f(x) и области G и различают разделы математического программирования: квадратичное программирование, выпуклое программирование, целочисленное программирование и т.д. Линейное программирование характеризуется тем, что
а) функция f(x) является линейной функцией переменных х 1 , х 2 , … х n
б) область G определяется системой линейных равенств или неравенств.