Основные природные полимеры нуклеиновые кислоты. Презентация на тему: Высшие природные полимеры - Белки и Нуклеиновые кислоты. Метапредметные результаты обучения биологии

Особую, очень важную, группу химических природных веществ составляют высокомолекулярные соединения (полимеры) . Их можно разделить на две большие группы:

    Природные органические полимеры - биополимеры

    Природные неорганические полимеры

В начале рассмотрим вещества, относящиеся к биополимерам.

Масса молекул биополимеров достигает нескольких десятков тысяч и роль этих соединений огромна. Полимерные вещества являются основой Жизни на Земле.

Таблица 1

Органические природные полимеры – биополимеры – обеспечивают процессы жизнедеятельности всех животных и растительных организмов. Интересно, что из множества возможных вариантов Природа "выбрала" всего 4 типа полимеров:

Рисунок 1

Полисахариды

Полисахариды – это природные высокомолекулярные углеводы, макромолекулы которых состоят из остатков моносахаридов.

Полисахариды составляют основную массу органической материи в биосфере Земли. В живой природе они выполняют важные биологические функции, выступая в качестве:

    структурных компонентов клеток и тканей,

    энергетического резерва,

    защитных веществ.

Полисахариды образуются из низкомолекулярных соединений общей формулы С n Н 2 n О n называемых сахарами или углеводами. Для сахаров характерно наличие альдегидной или кетонной групп, в соответствии с этим первые называются альдозами, вторые – кетозами. Среди сахаров с n = 6, называемых гексозами, имеется 16 изомерных альдогексоз и 16 кетогексоз. Однако только четыре из них (α-галактоза, d -манноза, d -глюкоза, d -фруктоза) встречаются в живой клетке. Биологическая роль сахаров определяется тем, что они являются источником энергии, необходимой организму, которая выделяется при их окислении, и исходным материалом для синтеза макромолекул.

В последнем случае большое значение имеет способность сахаров образовывать циклические структуры, что иллюстрируется ниже на примере глюкозы и фруктозы:

Рис. 2

В водном растворе глюкоза содержит 99,976 % циклического изомера. У кетогексоз циклические изомеры пятичленные. Циклические молекулы моносахаридов могут связываться между собой с образованием так называемых гликозидных связей путем конденсации гидроксильных групп.

Наиболее распространены полисахариды, повторяющиеся звенья которых являются остатками α-D-глюкопиранозы или ее производных.

Основные представители полисахаридов - крахмал и целлюлоза - построены из остатков одного моносахарида - глюкозы . Крахмал и целлюлоза имеют одинаковую молекулярную формулу:

(C6h10o5)n,

но совершенно различные свойства . Это обьясняется особенностями их пространственного строения.

Крахмал состоит из остатков α-глюкозы, а целлюлоза - из β-глюкозы, которые являются пространственными изомерами и отличаются лишь положением одной гидроксильной группы (выделена цветом):

Рисунок 3

С учетом пространственного строения шестичленного цикла формулы этих изомеров имеют вид:

Рисунок 4

К важнейшим полисахаридам относится также гликоген (C 6 H 10 O 5) n , образующийся в организмах человека и животных в результате биохимических превращений из растительных углеводов. Как и крахмал, гликоген состоит из остатков α-глюкозы и выполняет подобные функции (поэтому часто называется животным крахмалом).

Из химических свойств полисахаридов наибольшее значение имеют реакции гидролиза и образование производных за счёт реакций макромолекул по ОН-группам.

    Гидролиз полисахаридов происходит в разбавленных растворах минеральных кислот (или под действием ферментов). При этом в макромолекулах разрываются связи, соединяющие моносахаридные звенья - гликозидные связи (аналогично гидролизу дисахаридов ). Полный гидролиз полисахаридов приводит к образованию моносахаридов (целюллоза, крахмал и гликоген гидролизуются до глюкозы):

(C 6 H 10 O 5) n + n H 2 O (H +) n C 6 H 12 O 6

При неполном гидролизе образуются олигосахариды, в том числе и дисахариды. Способность полисахаридов к гидролизу увеличивается в ряду:

целлюлоза < крахмал < гликоген

Из целлюлозы (отходов деревообрабатывающей промышленности) в результате кислотного гидролиза и последующего сбраживания образующейся глюкозы получают этанол (называемый "гидролизным спиртом").

    Среди производных полисахаридов наибольшее практическое значение имеют простые и сложные эфиры целлюлозы. Их образование происходит в реакциях макромолекул целлюлозы по спиртовым ОН-группам (в каждом моносахаридном звене 3 группы ОН):

К важнейшим производным целлюлозы относятся: - метилцеллюлоза (простые метиловые эфиры целлюлозы) общей формулы

N (х = 1, 2 или 3);

- ацетилцеллюлоза (триацетат целлюлозы) - сложный эфир целлюлозы и уксусной кислоты

- нитроцеллюлоза (нитраты целлюлозы) - сложные азотнокислые эфиры целлюлозы:

N (х = 1, 2 или 3).

Эти полимерные материалы используются в производстве искусственных волокон, пластмасс, пленок, лакокрасочных материалов, бездымного пороха, взрывчатки, твердых ракетных топлив и др.

Тип урока - комбинированный

Методы: частично-поисковый, про-блемного изложения, объясни-тельно-иллюстративный.

Цель:

Формирование у учащихся целостной системы знаний о живой природе, ее системной организации и эволюции;

Умения давать аргументированную оценку новой информации по биоло-гическим вопросам;

Воспитание гражданской ответственности, самостоятельности, инициативности

Задачи:

Образовательные : о биологических системах (клетка, организм, вид, экосистема); истории развития современных представлений о живой природе; выдающихся открытиях в биологической науке; роли биологической науки в формировании современной естественнонаучной картины мира; методах научного познания;

Развитие творческихспособностей в процессе изучения выдающихся достижений биологии, вошедших в общечеловеческую культуру; сложных и противоречивых путей развития современных научных взглядов, идей, теорий, концепций, различных гипотез (о сущности и происхождении жизни, человека) в ходе работы с различными источниками информации;

Воспитание убежденности в возможности познания живой природы, необходимости бережного отношения к природной среде, собственному здоровью; уважения к мнению оппонента при обсуждении биологических проблем

Личностные результаты обучения биологии :

1. воспитание российской гражданской идентичности: патриотизма, любви и уважения к Отечеству, чувства гордости за свою Родину; осознание своей этнической принадлежности; усвоение гуманистических и традиционных ценностей многонационального российского общества; воспитание чувства ответственности и долга перед Родиной;

2. формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов;

Метапредметные результаты обучения биологии:

1. умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;

2. овладение составляющими исследовательской и проектной деятельности, включая умения видеть проблему, ставить вопросы, выдвигать гипотезы;

3. умение работать с разными источниками биологической информации: находить биологическую информацию в различных источниках (тексте учебника, научно популярной литературе, биологических словарях и справочниках), анализировать и

оценивать информацию;

Познавательные : выделение существенных признаков биологических объектов и процессов; приведение доказательств (аргументация) родства человека с млекопитающими животными; взаимосвязи человека и окружающей среды; зависимости здоровья человека от состояния окружающей среды; необходимости защиты окружающей среды; овладение методами биологической науки: наблюдение и описание биологических объектов и процессов; постановка биологических экспериментов и объяснение их результатов.

Регулятивные: умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ-компетенции).

Коммуникативные: формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, понимание особенностей гендерной социализации в подростковом возрасте, общественно полезной, учебно-исследовательской, творческой и дру-гих видов деятельности.

Технологии: Здоровьесбережения, проблем-ного, раз-вивающего обучения, групповой деятельно-сти

Приемы: анализ, синтез, умозаключение, перевод информации с одного вида в другой, обобщение.

Ход урока

Задачи

Сформулировать знания об особой роли нукле-иновых кислот в живой природе, — хранении и пе-редаче наследственной информации.

Охарактеризовать особенности строения моле-кул нуклеиновых кислот как биополимеров; лока-лизацию этих соединений в клетке

Раскрыть механизм удвоения ДНК, роль этого механизма в передаче наследственной информации.

Сформировать умение схематично изображать процесс удвоения ДНК.

Основные положения

Важнейшим событием добиологической эволюции явля-ется возникновение генетического кода в виде последова-тельности кодонов РНК, а затем и ДНК, которая оказалась способной сохранять информацию о наиболее удачных ком-бинациях аминокислот в белковых молекулах.

Появление первых клеточных форм ознаменовало нача-ло биологической эволюции, начальные этапы которой ха-рактеризовались появлением эукариотических организмов, полового процесса и возникновением первых многоклеточ-ных организмов.

Нуклеиновые кислоты преимущественно локализованы в клеточном ядре.

Дезоксирибонуклеиновая кислота * лярный линейный полимер, состоящи полинуклеотидных цепей.

Наследственная информация зак, последовательности нуклеотидов ДНК

Редупликация ДНК обеспечивает наследственной информации из пок поколение.

Вопросы для обсуждения

В чем заключается биологическая роль двухцепочечности молекул ДНК, выполняющих функции хранителя наследственной информации?

Какой процесс лежит в основе передачи наследственной информации из поколения в поколение? из ядра в цитоплазму к месту синтеза белка?

Биополимеры. Нуклеиновые кислоты

Типы нуклеиновых кислот. В клетках имеются два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Эти биополимеры состоят из мономеров, называемых нуклеотидами. Мономеры-нуклеотиды ДНК и РНК сходны в основных чертах строения. Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями.

Каждый из нуклеотидов, входящих в состав РНК, содержит пятиуглеродный сахар — рибозу; одно из четырех органических соединений, которые называют азотистыми основаниями, — аденин, гуанин, цитозин, урацил (А, Г, Ц, У); остаток фосфорной кислоты.

Нуклеотиды, входящие в состав ДНК, содержат пятиуглеродный сахар — дезоксирибозу, одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, Т); остаток фосфорной кислоты.

В составе нуклеотидов к молекуле рибозы (или дезоксирибозы) с одной стороны присоединено азотистое основание, а с другой — остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и фосфорной кислоты, а боковые группы этой цепи — четыре типа нерегулярно чередующихся азотистых оснований.

Рис 1. Схема строения ДНК. Многоточием обозначены водородные связи

Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями (рис. 7). Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против азотистого основания А в одной цепи лежит азотистое основание Т в другой цепи, а против азотистого основания Г всегда расположено азотистое основание Ц. Схематически сказанное можно выразить следующим образом:

А (аденин) — Т (тимин)
Т (тимин) — А (аденин)
Г (гуанин) — Ц (цитозин)
Ц (цитозин) — Г (гуанин)

Эти пары оснований называют комплементарными основаниями (дополняющими друг друга). Нити ДНК, в которых основания расположены комплементарно друг другу, называют комплементарными нитями. На рисунке 8 приведены две нити ДНК, которые соединены комплементарными участками.

Участок двуспиральной молекулы ДНК

Модель строения молекулы ДНК предложили Дж. Уотсон и Ф. Крик в 1953 г. Она полностью подтверждена экспериментально и сыграла исключительно важную роль в развитии молекулярной биологии и генетики.

Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, т. е. их первичную структуру. Набор белков (ферментов, гормонов и др.) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их поколениям потомков, т. е. являются носителями наследственной информации. Молекулы ДНК в основном находятся в ядрах клеток и в небольшом количестве в митохондриях и хлоропластах.

Основные виды РНК. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информация о строении белка передается в цитоплазму особыми молекулами РНК, которые называются информационными (иРНК). Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов — рибосом идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах. В синтезе белка принимает участие и другой вид РНК — транспортная (тРНК), которая подносит аминокислоты к месту образования белковых молекул — рибосомам, своеобразным фабрикам по производству белков.

В состав рибосом входит третий вид РНК, так называемая рибосомная (рРНК), которая определяет структуру и функционирование рибосом.

Каждая молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы она содержит рибозу и вместо тимина — урацил.

Итак, нуклеиновые кислоты выполняют в клетке важнейшие биологические функции. В ДНК хранится наследственная информация о всех свойствах клетки и организма в целом. Различные виды РНК принимают участие в реализации наследственной информации через синтез белка.

Самостоятельная работа

Рассмотрите рисунок 1 и скажите, в чем особенность строения молекулы ДНК. Какие компоненты входят в состав нуклеотидов?

Почему постоянство содержания ДНК в разных клетках организма считается доказательством того, что ДНК представляет собой генетический материал?

Используя таблицу, дайте сравнительную характеристику ДНК и РНК.

Фрагмент одной цепи ДНК имеет следующий состав: —А—А—А—Т—Т—Ц—Ц—Г—Г—. Достройте вторую цепь.

В молекуле ДНК тиминов насчитывается 20% от общего числа азотистых оснований. Определите количество азотистых оснований аденина, гуанина и цитозина.

В чем сходство и различие между белками и нуклеиновыми кислотами?

Вопросы и задания для повторения

Что такое нуклеиновые кислоты? Какие органические соединения служат эле-ментарной составной частью нуклеиновых кислот?

Какие типы нуклеиновых кислот Вы знаете

Чем отличается строение молекулы ДНК и РНК?

Назовите функции ДНК.

Какие виды РНК имеются в клетке?

Выберите правильный на ваш взгляд вариант ответа.

1. Где содержится генетическая информация?

В хромосомах

В генах

В клетках

2. Сколько процентов ДНК необходимо для того, чтобы закодировать все белки тела человека?

3. Как называется последний этап синтеза белка?

Трансляция

4. Что является носителем всей информации клетки?

5. Где находится ДНК?

В цитоплазме клетки

В ядре клетки

В вакуолях клетки

6. Важной частью какого процесса является синтез белков клетки?

Ассимиляции

Аккумуляции

Прострации

7. Затрат чего требует синтез белка?

Энергии

8. Что является источником энергии?

9. Чем определяется функция белка?

Первичной структурой

Вторичной структурой

Третичной структурой

10. Как называется участок ДНК, в котором содержится информация о первичной структуре белка?

Геном

Урок биологии. Нуклеиновые кислоты (ДНК и РНК).

Нуклеиновые кислоты

Строение и функции нуклеиновых кислот

Нуклеиновые кислоты и их роль в жизнедеятельности клетки. Строение и функции ДНК

Ресурсы

В. Б. ЗАХАРОВ, С. Г. МАМОНТОВ, Н. И. СОНИН, Е. Т. ЗАХАРОВА УЧЕБНИК «БИОЛОГИЯ» ДЛЯ ОБЩЕОБРАЗОВАТЕЛЬНЫХ УЧРЕЖДЕНИЙ (10-11класс) .

А. П. Плехов Биология с основами экологии. Серия «Учебники для вузов. Специальная литература».

Книга для учителя Сивоглазов В.И., Сухова Т.С. Козлова Т. А. Биология: общие закономерности.

http://tepka.ru/biologia10-11/6.html

Хостинг презентаций

Большая часть современных строительных материалов, лекарственных средств, тканей, предметов быта, упаковочных и расходных веществ является полимерами. Это целая группа соединений, имеющих характерные отличительные признаки. Их очень много, но несмотря на это, число полимеров продолжает расти. Ведь химики-синтетики ежегодно открывают все новые и новые вещества. При этом особенное значение во все времена имел именно природный полимер. Что же собой представляют эти удивительные молекулы? Каковы их свойства и в чем заключаются особенности? Ответим на эти вопросы в ходе статьи.

Полимеры: общая характеристика

С точки зрения химии, полимером принято считать молекулу, имеющую огромную молекулярную массу: от нескольких тысяч до миллионов единиц. Однако, помимо этого признака, существует и еще несколько, по которым вещества можно классифицировать именно как природные и синтетические полимеры. Это:

  • постоянно повторяющиеся мономерные звенья, которые соединяются при помощи разных взаимодействий;
  • степень полимеразии (то есть число мономеров) должна быть очень высокой, иначе соединение будет считаться олигомером;
  • определенная пространственная ориентация макромолекулы;
  • набор важных физико-химических свойств, характерных только для данной группы.

В целом вещество полимерной природы отличить от других достаточно легко. Стоит лишь взглянуть на его формулу, чтобы понять это. Типичным примером может служить всем известный полиэтилен, широко применяемый в быту и промышленности. Он является продуктом в которую вступает этен или этилен. Реакция в общем виде записывается следующим образом:

nCH 2 =CH 2 →(-СН-СН-) n , где n - это степень полимеризации молекул, показывающая, сколько мономерных звеньев входит в ее состав.

Также в качестве примера можно привести природный полимер, который всем хорошо известен, это крахмал. Кроме того, к данной группе соединений принадлежат амилопектин, целлюлоза, куриный белок и многие другие вещества.

Реакции, в результате которых могут образоваться макромолекулы, бывают двух типов:

  • полимеризации;
  • поликонденсации.

Разница в том, что во втором случае продукты взаимодействия являются низкомолекулярными. Строение полимера может быть различным, это зависит от тех атомов, что его образуют. Часто встречаются линейные формы, но есть и трехмерные сетчатые, очень сложные.

Если же говорить о силах и взаимодействиях, которые удерживают мономерные звенья вместе, то можно обозначить несколько основных:

  • Ван-Дер-Ваальсовы силы;
  • химические связи (ковалентные, ионные);
  • электроностатическое взаимодействие.

Все полимеры нельзя объединять в одну категорию, так как они имеют совершенно различную природу, способ образования и выполняют неодинаковые функции. Свойства их также разнятся. Поэтому существует классификация, которая позволяет делить всех представителей этой группы веществ на разные категории. В ее основе может лежать несколько признаков.

Классификация полимеров

Если брать за основу качественный состав молекул, то все рассматриваемые вещества можно определить в три группы.

  1. Органические - это те, в состав которых входят атомы углерода, водорода, серы, кислорода, фосфора, азота. То есть те элементы, которые являются биогенными. Примеров можно привести массу: полиэтилен, поливинилхлорид, полипропилен, вискоза, нейлон, природный полимер - белок, нуклеиновые кислоты и так далее.
  2. Элементорганические - такие, в состав которых входит какой-то посторонний неорганический и не Чаще всего это кремний, алюминий или титан. Примеры подобных макромолекул: стеклополимеры, композиционные материалы.
  3. Неорганические - в основе цепи лежат атомы кремния, а не углерода. Радикалы же могут быть частью боковых ответвлений. Они открыты совсем недавно, в середине XX века. Используются в медицине, строительстве, технике и прочих отраслях. Примеры: силикон, киноварь.

Если разделять полимеры по происхождению, то можно выделить три их группы.

  1. Природные полимеры, применение которых широко осуществлялось с самой древности. Это такие макромолекулы, для создания которых человек не прилагал никаких усилий. Они являются продуктами реакций самой природы. Примеры: шелк, шерсть, белок, нуклеиновые кислоты, крахмал, целлюлоза, кожа, хлопок и прочие.
  2. Искусственные. Это такие макромолекулы, которые создаются человеком, но на основе природных аналогов. То есть просто улучшаются и изменяются свойства уже имеющегося природного полимера. Примеры: искусственный
  3. Синтетические - это такие полимеры, в создании которых участвует только человек. Природных аналогов для них нет. Ученые разрабатывают методы синтеза новых материалов, которые отличались бы улучшенными техническими характеристиками. Так рождаются синтетические полимерные соединения разного рода. Примеры: полиэтилен, полипропилен, вискоза, и прочее.

Есть и еще один признак, который лежит в основе разделения рассматриваемых веществ на группы. Это реакционная способность и термоустойчивость. Выделяют две категории по этому параметру:

  • термопластичные;
  • термореактивные.

Самым древним, важным и особенно ценным является все же природный полимер. Его свойства уникальны. Поэтому дальше рассмотрим именно эту категорию макромолекул.

Какое вещество является природным полимером?

Чтобы ответить на этот вопрос, сначала оглянемся вокруг себя. Что нас окружает? Живые организмы вокруг нас, которые питаются, дышат, размножаются, цветут и дают плоды и семена. А что они представляют собой с молекулярной точки зрения? Это такие соединения, как:

  • белки;
  • нуклеиновые кислоты;
  • полисахариды.

Так вот, природным полимером является каждое из приведенных соединений. Таким образом, выходит, что жизнь вокруг нас существует только благодаря наличию этих молекул. С самых древних времен люди использовали глину, строительные смеси и растворы для укрепления и создания жилища, ткали пряжу из шерсти, применяли для создания одежды хлопок, шелк, шерсть и кожу животных. Природные органические полимеры сопровождали человека на всех ступенях его становления и развития и во многом помогли ему добиться тех результатов, что мы имеем сегодня.

Сама природа давала все для того, чтобы жизнь людей была максимально комфортной. Со временем был открыт каучук, выяснены его замечательные свойства. Человек научился использовать в пищевых целях крахмал, в технических - целлюлозу. Природным полимером является и камфора, которая также известна с древних времен. Смолы, белки, нуклеиновые кислоты - все это примеры рассматриваемых соединений.

Строение природных полимеров

Не все представители данного класса веществ устроены одинаково. Так, природные и синтетические полимеры могут существенно различаться. Их молекулы ориентируется так, чтобы максимально выгодно и удобно существовать с энергетической точки зрения. При этом многие природные виды способны набухать и структура их в процессе меняется. Можно выделить несколько самых распространенных вариантов строения цепи:

  • линейные;
  • разветвленные;
  • звездчатые;
  • плоские;
  • сетчатые;
  • ленточные;
  • гребневидные.

Искусственные и синтетические представители макромолекул имеют очень большую массу, огромное число атомов. Их создают со специально заданными свойствами. Поэтому и строение их изначально планируется человеком. Натуральные же полимеры чаще всего либо линейные, либо сетчатые по своей структуре.

Примеры природных макромолекул

Природные и искусственные полимеры очень близки друг другу. Ведь первые становятся основой для создания вторых. Примеров подобных превращений много. Приведем некоторые из них.

  1. Обычная пластмасса молочно-белого цвета - это продукт, получаемый при обработке азотной кислотой целлюлозы с добавлением природной камфоры. Реакция полимеризации приводит к затвердеванию полученного полимера и превращению в нужный продукт. А пластификатор - камфора, делает его способным размягчаться при нагревании и менять свою форму.
  2. Ацетатный шелк, медно-аммиачное волокно, вискоза - все это примеры тех нитей, волокон, которые получают на основе целлюлозы. Ткани из и льна не так прочны, не блестящи, легко сминаемы. А вот искусственные аналоги их этих недостатков лишены, что и делает их использование весьма привлекательным.
  3. Искусственные камни, строительные материалы, смеси, кожзаменители - это также примеры полимеров, полученных на основе натурального сырья.

Вещество, являющееся природным полимером, может использоваться и в истинном виде. Таких примеров тоже немало:

  • канифоль;
  • янтарь;
  • крахмал;
  • амилопектин;
  • целлюлоза;
  • шерсть;
  • хлопок;
  • шелк;
  • цемент;
  • глина;
  • известь;
  • белки;
  • нуклеиновые кислоты и так далее.

Очевидно, что рассматриваемый нами класс соединений очень многочисленный, практически важный и значимый для людей. Теперь рассмотрим более подробно несколько представителей природных полимеров, которые являются очень востребованными в настоящее время.

Шелк и шерсть

Формула природного полимера шелка сложна, ведь его химический состав выражается следующими компонентами:

  • фиброин;
  • серицин;
  • воски;
  • жиры.

Сам главный белок - фиброин, насчитывает в своем составе несколько разновидностей аминокислот. Если представить его полипептидную цепочку, то она будет выглядеть примерно так: (-NH-CH 2 -CO-NH-CH(CH 3)-CO-NH-CH 2 -CO-) n. И это лишь ее часть. Если представить, что к данной структуре при помощи сил Ван-Дер-Ваальса присоединяется не менее сложная молекула белка серицина, вместе они смешиваются в единую конформацию с воском и жирами, то понятно, почему сложно изобразить формулу натурального шелка.

На сегодняшний день большую часть данного продукта поставляет Китай, ведь на его просторах существует естественная среда обитания основного производителя - тутового шелкопряда. Раньше, начиная с самых древних времен, натуральный шелк очень ценился. Позволить себе одежду из него могли лишь знатные, богатые люди. Сегодня многие характеристики этой ткани оставляют желать лучшего. Например, он сильно намагничивается и мнется, кроме того, от пребывания на солнце теряет блеск и тускнеет. Поэтому больше в обиходе искусственные производные на его основе.

Шерсть - это тоже природный полимер, так как является продуктом жизнедеятельности кожи и сальных желез животных. На основе этого белкового продукта изготавливают трикотаж, который, как и шелк, является ценным материалом.

Крахмал

Природный полимер крахмал является продуктом жизнедеятельности растений. Они производят его в результате процесса фотосинтеза и накапливают в разных частях тела. Его химический состав:

  • амилопектин;
  • амилоза;
  • альфа-глюкоза.

Пространственная структура крахмала очень разветвленная, неупорядоченная. Благодаря входящему в состав амилопектину, он способен набухать в воде, превращаясь в так называемый клейстер. Этот используется в технике и промышленности. Медицина, пищевая отрасль, изготовление обойных клеев - это также области использования данного вещества.

Среди растений, содержащих максимальное количество крахмала, можно выделить:

  • кукурузу;
  • картофель;
  • пшеницу;
  • маниок;
  • овес;
  • гречиху;
  • бананы;
  • сорго.

На основе этого биополимера выпекают хлеб, изготавливают макаронные изделия, варят кисели, каши и прочие пищевые продукты.

Целлюлоза

С точки зрения химии, данное вещество - это полимер, состав которого выражается формулой (С 6 Н 5 О 5) n . Мономерным звеном цепи является бета-глюкоза. Основные места содержания целлюлозы - это клеточные стенки растений. Именно поэтому древесина - ценный источник этого соединения.

Целлюлоза - природный полимер, который имеет линейное пространственное строение. Она используется для производства следующих видов изделий:

  • целлюлозно-бумажной продукции;
  • искусственного меха;
  • разных видов искусственных волокон;
  • хлопка;
  • пластмассы;
  • бездымного пороха;
  • кинопленок и так далее.

Очевидно, что промышленное значение ее велико. Чтобы данное соединение возможно было использовать в производстве, его следует для начала извлечь из растений. Это делают путем длительной варки древесины в специальных устройствах. Дальнейшая обработка, а также реагенты, используемые для вываривания, различаются. Есть несколько способов:

  • сульфитный;
  • азотнокислый;
  • натронный;
  • сульфатный.

После подобной обработки продукт все еще содержит примеси. В основе это лигнин и гемицеллюлоза. Чтобы избавиться от них, массу обрабатывают хлором или щелочью.

В организме человека не существует таких биологических катализаторов, которые сумели бы расщепить этот сложный биополимер. Однако некоторые животные (травоядные) приспособились к этому. В их желудке поселяются определенные бактерии, которые делают это за них. Взамен микроорганизмы получают энергию для жизни и среду обитания. Такая форма симбиоза является крайне выгодной для обеих сторон.

Каучук

Это природный полимер, имеющий ценное хозяйственное значение. Впервые он был описан еще Робертом Куком, который в одном из своих путешествий его обнаружил. Произошло это так. Высадившись на острове, на котором жили неизвестные ему туземцы, он был гостеприимно встречен ими. Его внимание привлекли местные дети, которые играли необычным предметом. Это шарообразное тело отталкивалось от пола и подпрыгивало высоко вверх, затем возвращалось.

Поинтересовавшись у местного населения о том, из чего сделана эта игрушка, Кук узнал, что так застывает сок одного из деревьев - гевеи. Много позже было выяснено, что это и есть биополимер каучук.

Химическая природа данного соединения известна - это изопрен, подвергшийся естественной полимеризации. Формула каучука (С 5 Н 8) n . Его свойства, благодаря которым он так высоко ценится, следующие:

  • эластичность;
  • износостойкость;
  • электроизоляция;
  • водонепроницаемость.

Однако есть и недостатки. На холоде он становится хрупким и ломким, а на жаре - липким и тягучим. Именно поэтому появилась необходимость синтеза аналогов искусственной или синтетической основы. Сегодня каучуки широко используются в технических и промышленных целях. Самые главные продукты на их основе:

  • резины;
  • эбониты.

Янтарь

Является природным полимером, поскольку по своей структуре представляет смолу, ископаемую ее форму. Пространственная структура - каркасный аморфный полимер. Очень горюч, зажечь его можно пламенем спички. Обладает свойствами люминесценции. Это очень важное и ценное качество, которое используется в ювелирном деле. Украшения на основе янтаря очень красивы и востребованы.

Кроме того, этот биополимер используют и в медицинских целях. Из него же изготовляют наждачную бумагу, лаковые покрытия для различных поверхностей.

ПРИРОДНЫЕ ПОЛИМЕРЫ: полисахариды, белки, нуклеиновые кислоты Молекулы полимеров построены из многократно повторяющихся структурных единиц – элементарных звеньев (мономеров)

Полисахариды Полисахариды представляют собой продукты поликонденсации моносахаридов, которые связаны друг с другом гликозидными связями. Таким образом, по химической природе они являются полигликозидами (полиацеталями). В полисахаридах растительного происхождения в основном присутствуют (1→ 4)- и (1→ 6)-гликозидные связи, а в полисахаридах животного и бактериального происхождения дополнительно имеются (1→ 3)- и (1→ 2)-гликозидные связи.

Гликозидная природа полисахаридов обусловливает их способность к гидролизу в кислой среде. Полный гидролиз приводит к образованию моносахаридов и их производных, а неполный к образованию олигосахаридов, в том числе дисахаридов. В щелочной среде полисахариды обладают высокой устойчивостью и не подвергаются распаду.

Крахмал (резервный гомополисахарид растений) представляет собой белое аморфное вещество, нерастворимое в холодной воде. При быстром нагревании крахмала за счет содержания в нем влаги происходит гидролитическое расщепление полимерной цепи на более мелкие осколки, называемые декстринами. Декстрины растворяются в воде лучше, чем крахмал. Крахмал представляет собой смесь двух полимеров, построенных из D-глюкопиранозных остатков – амилозы (1020%) и амилопектина (80 -90%).

В амилозе D-глюкопиранозные остатки связаны α-(1→ 4)-гликозидными связями, т. е. дисахаридным фрагментом амилозы является мальтоза. Цепь амилозы неразветвленная. Она включает 2001000 глюкозидных остатков. Макромолекула амилозы свернута в спираль. При этом на каждый виток спирали приходится шесть моносахаридных звеньев.

Амилопектин отличается от амилозы высокоразветвленным строением. В линейных участках этого полисахарида D-глюкопиранозные остатки связаны α-(1→ 4)-гликозидными связями, а в точках разветвления имеются дополнительные α-(1→ 6)гликозидные связи. Между точками разветвления располагаются 20 -25 остатков глюкозы.

Гликоген (резевный гомополисахарид животных организмов) является структурным и функциональным аналогом крахмала. По строению подобен амилопектину, но отличается от него большей разветвленностью и более жесткой упаковкой молекулы. Сильное разветвление способствует выполнению гликогеном энергетической функции, поскольку при наличии большого числа концевых остатков обеспечивается быстрое отщепление нужного количества глюкозы.

Целлюлоза или клетчатка представляет собой наиболее распространенный структурный гомополисахарид растений. Она состоит из остатков D-глюкопиранозы, которые связанны β-(1→ 4)-гликозидными связями. Т. о. , дисахаридным фрагментом целлюлозы является целлобиоза. Полимерная цепь целлюлозы не имеет разветвлений. В ней содержится 250012000 остатков глюкозы, что соответствует молекулярной массе от 400000 до 1 -2 млн.

Макромолекула целлюлозы имеет строго линейное строение. Благодаря этому внутри цепи, а также между соседними цепями образуются водородные связи. Такая упаковка молекулы обеспечивает высокую механическую прочность, нерастворимость в воде и химическую инертность. Целлюлоза не расщепляется в желудочно-кишечном тракте, поскольку в организме отсутствует фермент, способный гидролизовать β-(1→ 4)гликозидные связи. Несмотря на это, она является необходимым балластным веществом для нормального питания.

Хитин является структурным гомополисахаридом наружного скелета членистоногих и некоторых других беспозвоночных животных, а также клеточных мембран грибов. хитин Хитин построен из остатков N-ацетил D-глюкозамина, связанных между собой α-(1→ 4)-гликозидными связями. Макромолекула хитина не имеет разветвлений, а его пространственная упаковка подобна целлюлозе.

Аминокислоты - гетерофункциональные соединения, молекулы которых содержат одновременно амино– и карбоксильную группы. Пример:

В твёрдом состоянии -аминокислоты существуют в виде диполярных ионов; в водном растворе – в виде равновесной смеси диполярного иона, катионной и анионной форм (обычно используемая запись строения -аминокислоты в неионизированном виде служит лишь для удобства). анион диполярный ион катион

Положение равновесия зависит от р. Н среды. Общим для всех -аминокислот является преобладание катионных форм в сильнокислых (р. Н 1 -2) и анионных – в сильнощелочных (р. Н 13 -14) средах. Положение равновесия, т. е. соотношение различных форм аминокислоты, в водном растворе при определённых значениях р. Н существенно зависит от строения радикала, главным образом наличия в нём ионогенных групп, играющих роль кислотных и основных центров.

Значение р. Н, при котором концентрация диполярных ионов максимальна, а минимальные концентрации катионных и анионных форм -аминокислоты равны, называется изоэлектрической точкой (p. I).

Специфические свойства аминокислот Образование пептидов. Одновременное присутствие в молекулах α–аминокислот аминной и карбоксильной групп обусловливает их способность вступать в реакции поликонденсации, которые приводят к образованию пептидных (амидных) связей между мономерными звеньями. В результате такой реакции образуются пептиды, полипептиды и белки. пептидные связи

Номенклатура пептидов N-концевой аминокислотный остаток (имеющий свободную аминогруппу) пишут с левой стороны формулы, а С-концевой аминокислотный остаток (имеющий свободную карбоксильную группу) с правой стороны: трипептид глицилаланилфенилаланин

Последовательность расположения аминокислотных остатков в одной или нескольких полипептидных цепях, составляющих молекулу белка, – это первичная структура белка.

Кроме первичной, в белковых молекулах выделяют вторичную, третичную и четвертичную структуры. Под вторичной структурой белка подразумевают конформацию полипептидной цепи, т. е. способ её скручивания или складывания в соответствии с программой, заложенной в первичной структуре, в –спираль или β–структуру.

Ключевую роль в стабилизации этой структуры играют водородные связи, которые в α–спирали образуются между карбонильным атомом кислорода каждого первого и атомом водорода NH –группы каждого пятого –аминокислотных остатков

В отличие от –спирали β–структура образована за счёт межцепочечных водородных связей между соседними участками полипептидной цепи

Под третичной структурой белка (субъединицей) подразумевают пространственную ориентацию или способ укладки полипептидной цепи в определенном объеме, которая включает элементы вторичной структуры. Она стабилизируется за счет различных взаимодействий, в которых участвуют боковые радикалы –аминокислотных остатков, находящихся в линейной полипептидной цепи на значительном удалении друг от друга, но сближенные в пространстве за счет изгибов цепи.

а - электростатическое взаимодействие б - водородная связь в - гидрофобные взаимодействия неполярных групп г - диполь-дипольные взаимодействия д - дисульфидная (ковалентная)связь.

Под четвертичной структурой белка подразумевают ассоциированные между собой две или более субъединиц, ориентированных в пространстве. Четвертичная структура поддерживается за счет водородных связей и гидрофобных взаимодействий. Она характерна для некоторых белков (гемоглобин).

Пространственная структура белковой молекулы способна нарушаться под влиянием изменения p. H–среды, повышенной температуры, облучения УФ–светом и т. д. Разрушение природной (нативной) макроструктуры белка называется денатурацией. В результате денатурации исчезает биологическая активность и снижается растворимость белков. Первичная структура белка при денатурации сохраняется.

Биологические функции белков 1. Строительная (структурная). Белки – основа протоплазмы любой клетки, основной структурный материал всех клеточных мембран. 2. Каталитическая. Все ферменты являются белками. 3. Двигательная. Все формы движения в живой природе осуществляются белковыми структурами клеток.

4. Транспортная. Белки крови транспортируют кислород, жирные кислоты, липиды, гормоны. Специальные белки переносят различные вещества через биомембраны. 5. Гормональная. Ряд гормонов относятся к белкам. 6. Запасная. Белки способны образовывать запасные отложения.

7. Опорная. Белки входят в состав костей скелета, сухожилий, суставов и т. д. 8. Рецепторная. Рецепторные белки играют важную роль в передаче нервного или гормонального сигнала в клетку – мишень.

Классификация белков 1. По форме молекул различают фибриллярные (волокнистые) и глобулярные (корпускулярные) белки. Фибриллярные белки нерастворимы в воде. Глобулярные белки растворимы в воде или водных растворах кислот, оснований или солей. Из-за большого размера молекул образующиеся растворы являются коллоидными.

Молекулы фибриллярных белков вытянуты в длину, нитеобразны и склонны группироваться одна около другой с образованием волокон. В некоторых случаях они удерживаются рядом благодаря многочисленным водородным мостикам. Молекулы глобулярных белков сложены в компактные клубочки. Водородные связи в этом случае внутримолекулярные, и площадь соприкосновения между отдельными молекулами невелика. В этом случае межмолекулярные силы относительно слабы.

Фибриллярные белки служат основным строительным материалом. К их числу относят следующие белки: кератин – в коже, волосах, ногтях, рогах и перьях; коллаген – в сухожилиях; миозин – в мускулах; фиброин – в шёлке.

Глобулярные белки выполняют ряд функций, связанных с поддержанием и регуляцией жизненных процессов, - функций, требующих подвижности и, следовательно, растворимости. К их числу относят следующие белки: все ферменты, многие гормоны, например инсулин (из поджелудочной железы), тироглобулин (из щитовидной железы), адренокортикотропныйгормон (АКТГ) (из гипофиза); антитела, ответственные за аллергические реакции и обеспечивающие защиту от чужеродных организмов; альбумин яиц; гемоглобин, являющийся переносчиком кислорода из лёгких в ткани; фибриноген, который превращается в нерастворимый фибриллярный белок фибрин, что вызывает свёртывание крови.

2. По степени сложности белки разделяют на простые и сложные. При гидролизе простых белков получаются только аминокислоты. Сложные белки (протеиды) помимо собственно белковой части содержат небелковые остатки, называемые коферментами и простетическими группами.

К простым белкам относят: - альбумины – водорастворимые белки, составляют 50% всех белков плазмы крови человека, содержатся в белке яиц, молоке, растениях; - глобулины – нерастворимые в воде белки, составляющие большую часть белков семян растений, особенно бобовых и масличных; - проламины – характерны исключительно для семян злаков. Они играют роль запасных белков. В их составе много пролина и глутаминовой кислоты;

- глютелины – содержатся в семенах злаков и бобовых растений; - гистоны – присутствуют в ядрах клеток животных и растений, преобладают в белках хромосом; - протамины – содержатся в половых клетках человека, животных и растений; - протеиноиды – трудно растворимые белки с высоким содержанием серы – фибриллярные белки (фиброин – белок шёлка, кератины белки волос, рогов, копыт, коллагены – белки соединительной ткани).

К сложным белкам относят: - липопротеины = белок + липид. Образуются за счёт водородных связей и гидрофобного взаимодействия. Обязательные компоненты клетичных мембран, крови, мозга; - фосфопротеины = белок + PO 43(остаток фосфорной кислоты связан с серином и треонином). Играют важную роль в питании молодых организмов (казеин молока, вителлин и фосвитин яичного желтка, ихтулин икры рыб);

- металлопротеины = белок + металл (Cu, Ca, Fe, Mn, Zn, Ni, Mo, Se); - гликопротеины = белок + углевод. К ним относятся фибриноген, протромбин (факторы свёртывания крови), гепарин (антисвёртывающее вещество), гормоны, интерферон (ингибитор размножения вирусов животных).

Полимерные цепи нуклеиновых кислот построены из мономерных единиц – нуклеотидов, в связи с чем нуклеиновые кислоты называют полинуклеотидами.

Мономерное звено представляет собой трёхкомпонентное образование, включающее: - гетероциклическое основание, - углеводный остаток, - фосфатную группу.

Входящие в состав нуклеиновых кислот гетероциклические основания пиримидинового и пуринового рядов называют нуклеиновыми основаниями.

Заместители в гетероциклическом ядре нуклеиновых оснований: оксогруппа аминогруппа одновременно обе эти группы

Азотистое основание и углевод связаны между собой N-гликозидной связью. При этом N-гликозидная связь осуществляется между атомом углерода С-1 рибозы (дезоксирибозы) и атомом азота N-1 пиримидинового и N-9 пуринового оснований.

N-гликозиды нуклеиновых оснований с рибозой или дезоксирибозой – нуклеозиды. В зависимости от природы углеводного остатка различают рибонуклеозиды и дезоксирибонуклеозиды. В составе нуклеиновых кислот обнаруживаются только β-нуклеозиды.

РНК Нуклеиновое Урацил основание Цитозин Аденин Гуанин Углевод Рибоза ДНК Тимин Цитозин Аденин Гуанин Дезоксирибоза

Номенклатура нуклеозидов Цитозин + рибоза цитидин Цитозин + дезоксирибоза дезоксицитидин Аденин + рибоза аденозин Аденин + дезоксирибоза дезоксиаденозин -идин у пиримидиновых, -озин у пуриновых нуклеозидов

Нуклеозиды достаточно устойчивы к гидролизу в слабощелочной среде. В кислой среде они подвергаются гидролизу. При этом пуриновые нуклеозиды гидролизуются легче, чем пиримидиновые.

Нуклеотиды - фосфаты нуклеозидов Реакция этерификации между фосфорной кислотой и нуклеозидом обычно осуществляется при С-5 или С-3 атоме в остатке рибозы (рибонуклеотиды) или дезоксирибозы (дезоксирибонуклеотиды).

Номенклатура нуклеотидов Азотистые основания Нуклеозиды (основание + углевод) Мононуклеотиды (нуклеозиды + Н 3 РО 4) Сокращенное обозначение Пуриновые Аденин Аденозин АМФ Гуанин Гуанозин Аденозинмонофосфат (адениловая кислота) Гуанозинмонофосфат (гуаниловая кислота) Пиримиди- Урацил Уридин новые Цитозин Цитидин Тимидин ГМФ Уридинмонофосфат УМФ (уридиловая кислота) Цитидинмонофосфат ЦМФ (цитидиловая кислота) Тимидинмонофосфат ТМФ (тимидиловая кислота)

Аденозин-5"-монофосфат (АМФ) Аденозин-5"-дифосфат (АДФ) Аденозин-5"-трифосфат (АТФ)

циклический 3", 5"-АМФ (ц. АМФ) является естественно встречающимся рибонуклеотидом (он образуется из АТФ в процессе реакции, катализируемой ферментом аденилатциклазой). ц. АМФ наделен рядом уникальных функций и высокой биологической активностью в регуляции процессов обмена, выполняя роль медиатора внеклеточных сигналов в клетках животных.

ДНК в основном содержится в ядрах клеток, а РНК находится в рибосомах и в протоплазме клеток. 3 вида клеточных РНК (различаются по местоположению в клетке, составу и размерам, а также по функциям): - транспортная (т. РНК) - матричная (м. РНК) - рибосомная (р. РНК)

Дж. Уотсон, Ф. Крик 1953 г. Вторичная структура ДНК в виде двойной спирали Молекула ДНК состоит из двух полинуклеотидных цепей, правозакрученных вокруг общей оси с образованием двойной спирали, имеющей диаметр 1, 8 – 2, 0 нм. Две нуклеотидные цепи антипараллельны другу (противоположные направления образования фосфодиэфирных связей 5’-3’ и 3’-5’). Пуриновые и пиримидиновые основания направлены внутрь спирали. Между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи возникают водородные связи. Эти основания составляют комплементарные пары.

Основания, располагающиеся внутри спирали, прочно упакованы и не контактируют с водой. Вода контактирует лишь с ОН – группами углевода и фосфатными группами. Водородные связи между комплементарными основаниями – один из видов взаимодействий, стабилизирующих двойную спираль. Две цепи ДНК, образующие двойную спираль, не идентичны, но комплементарны между собой.

Т. е. первичная структура (нуклеотидная последовательность) одной цепи предопределяет первичную структуру второй цепи.

Правила Чаргаффа Количество пуриновых оснований равно количеству пиримидиновых оснований Количество аденина равно количеству тимина; количество гуанина равно количеству цитозина Сумма аденина и цитозина равна сумме гуанина и тимина

Роль комплементарных взаимодействий в осуществлении биологической функции ДНК Комплементарность цепей составляет химическую основу важнейшей функции ДНК – хранения и передачи наследственных признаков. Сохранность нуклеотидной последовательности – залог безошибочной передачи генетической информации.

Однако нуклеотидная последовательность ДНК под действием различных факторов может подвергаться изменениям – мутациям. Мутация – изменение наследственности. Наиболее распространённый вид мутации – замена какой-либо пары оснований на другую. Одной из причин может быть сдвиг таутомерного равновесия. Другие причины – воздействие химических факторов или излучений.

Мутагены – вещества, вызывающие мутации: - мутагены прямого действия, - промутагены, которые сами по себе неактивны, но в организме под действием ферментов превращаются в мутагенные продукты. Типичные мутагены – нитриты и азотистая кислота, которые могут образовываться в организме из нитратов.

Третичная структура ДНК У всех живых организмов двухспиральные молекулы ДНК плотно упакованы с образованием сложных трехмерных структур. Двухцепочечные ДНК прокариот и эукариот суперспирализированы. Суперспирализация необходима для компактной упаковки молекулы в небольшом объеме пространства, а также немаловажно для начала процессов репликации (“снятия копии”), а также для процесса биосинтеза белка (транскрипция). Третичная структура ДНК эукариот в отличие от прокариот функционирует только в комплексе с белками хромосом.