Бензол и озон уравнение реакции. Окисление глицерина хромовой кислотой. а также полимерами

Реакции озона с различными ароматическими соединениями в интервале температур (-40) – (-20)°С по скорости реакции подчиняются бимолекулярному закону. Энергия активации реакции для бензола равна 50 кДж/моль, а скорость процесса сильно возрастает с увеличением полярности среды или в присутствии кислых катализаторов.

Приведем данные о некоторых кинетических параметрах реакции озона с ароматическими углеводородами в CCl4 при t = 20°C и начальной концентрации озона О3 = 10-4¸10-6 моль/л, соответственно, стехиометрический коэффициент; константа скорости - k, л/моль×с; для: бензола - 3; 6 ×10-2; нафталина - 2; 2,4; фенантрена - 1; 0,8×102; пирена - 2; 0,8×102; полинафталина - 1,6×103; антрацена - 3; 5×103 (первая стадия) и 43 (вторая стадия). После присоединения первой молекулы озона происходит нарушение сопряжения у бензола и нафталина и следующие акты реакции протекают намного легче. Сопоставление констант скоростей реакций различных соединений с озоном показывает, что ароматические соединения реагируют значительно медленнее, чем олефины, причём константы скорости реакции увеличиваются в ряду: бензол < нафталин < фенантрен < пирен < антрацен. Озониды бензола и нафталина - вступают в характерные реакции с HI, NaOH, NH2OH·HCl, подвергаются термическому разложению с образованием пары: альдегид + кислота, а также способны к образованию полимеров.

Оценку возможного индукционного влияния ранее присоединившегося озона на направление реакций соседней C=C-связи можно рассмотреть на основании состава продуктов разложения метоксигидроперекисей нафталина: при нагревании промежуточные продукты соответственно превращаются в метиловый эфир полуальдегида фталевой кислоты и диметилфталат, причем в смеси промежуточных продуктов содержится до 80 %. Таким образом, индукционное влияние озонидного цикла, образовавшегося в предыдущем акте реакции, проявляется в предпочтительном образовании биполярного иона у углеродного атома, наиболее удалённого от места присоединения первой молекулы озона.


Реакции озона без затрагивания ароматического ядра основаны на известном положении, что в процессах окисления или при атаках свободными радикалами в реакцию легче вступают заместители, чем ароматическое ядро. Например, константы скорости для замещённых бензолов в ряду заместителей CH3 < CH3-CH2 < (CH3)2 CH - растут симбатно с увеличением числа реакционноспособных атомов водорода в заместителе и уменьшением прочности C-H связи.

Замещённые алкилароматические соединения могут реагировать с озоном двояким образом: с образованием гидроперекисей по цепному механизму окисления и с образованием озонидов. Причём преобладающим является первое направление, а не второе. Протекание реакции по радикальному механизму подтверждается интенсивной хемилюминисценцией, возникающей при пропускании озона через алкилбензолы, обусловленной взаимодействием перекисных радикалов друг с другом.

При действии озона на антрацен основным продуктом реакции является антрахинон, количество которого колеблется в пределах 20÷80 %, причём выход антрахинона зависит от природы растворителя, возрастая в уксусной кислоте и падая в CCl4. Вторым продуктом (с выходом 18÷67 %) является фталевая кислота - C6H5(COOH)2, а выход 4,3-нафталиндикарбонной кислоты - C12H10(COOH)2 составляет (6÷8) %. Известно , что антрацен легко окисляется кислородом, образуя антрахинон с высоким выходом. Процессы такого же типа наблюдаются при окислении поликарбонатов и алкилароматических углеводородов озоном.

Таким образом, в реакциях озона с ароматическими углеводородами обнаруживаются два типа присоединения озона к C=C связям ароматического ядра: 1) сохраняются все три кислорода молекулы озона и образуются озониды, имеющие много общего с озонидами олефинов; 2) в молекуле нового соединения сохраняется один атом из трёх.

Реакция озона с ароматическими углеводородами может использоваться в следующих синтезах:

1) получение дифеновой кислоты из фенантрена:

2) получение фталевого диальдегида и фталевой кислоты (а. с. 240700 СССР, 1969, БИ № 13), путём присоединения нафталином первых двух молекул озона из пяти возможных, после чего реакция сильно замедляется:

3) получение глиоксалевой кислоты (а. с. 235759 СССР, 1969, БИ № 6) на базе низшего гомолога - бензола по реакции:

1.6. Реакции взаимодействия озона с аминами, сернистыми и элементорганическими соединениями,

а также полимерами

При реакции озона с аминами, например, третичными, образуются окиси аминов, с высоким выходом (пат. 437566 Англия, 1935), а также нитроксильные радикалы и другие соединения (которые используются в качестве модификаторов и ингибиторов деструкции резин от О3). Схемы реакций взаимодействия О3 с третичными, вторичными и первичными аминами сложны и содержат много параллельно и последовательно протекающих реакций. Например, при реакции озона с трибутиламином в хлороформе выделено более 40 промежуточных и конечных продуктов реакции. Кинетика реакции озона с аминами подчиняется бимолекулярному закону и зависит от природы растворителя.


I. Взаимодействие О3 с третичными аминами представляется следующей схемой :

1) R3N: + О=О+-О–→ R3N+-O-O-O– (происходит присоединение О3 к амину с образованием продукта, по аналогии с реакцией О3 с альдегидами, насыщенными углеводородами с кратными связями);

2) R3N+-O-OO–→ R3N → O + O2; (образование окисей аминов);

3) R2N-(O-O-O-)-C(H2)-RI®R2N=CH-(HO-O-O-)-R®R2N-CHOHRI + O2 (или R2N-CH(-O-O-OH)-RI) (происходит окисление заместителей).

Выход оксидов аминов максимален в растворителях в виде хлорсодержащих углеводородов и спиртов (CCl4, хлороформ, хлористый метилен). Также, понижение температуры реакции (<25 ºС) благоприятно сказывается на выходе оксидов аминов. Использование n-пентана уменьшает выход почти в 10 раз. Например, при озонировании трибутиламина в метаноле образуются (в %): (C4H9)3N → 0÷53; C4H9N=CH-C3H7 → 2; C4H9NCH=0 → 3; C4H9NCH=CHC2H5 → 11; (C4H9)2NH → 9; C4H9NCOC3H7 → 6.

II. Реакция О3 со вторичными аминами приводит к образованию нитроксильных радикалов, которые в зависимости от строения амина могут быть главными продуктами реакции или присутствовать в заметных количествах. Особенно легко образуют нитроксильные радикалы ароматические амины и производные n-фенилендиамина. Например, взаимодействие озона с триацетонамином, получающийся нитроксильный радикал (2,2,6,6-тетрометил-4-оксопиперидоксил), отличается большой стабильностью и сохраняется месяцами при комнатной температуре без заметных изменений. Большинство ароматических аминов являются антиозонантами и используются для защиты резиновых изделий от озонового старения.

Реакцию озона с вторичными аминами можно представить по схеме (действие О3 на ди-трет-бутиламин в пентане, при t = -120 ºС):

III. Основными продуктами взаимодействия озона с первичными аминами являются нитросоединения и аммониевые основания. Их относительное содержание зависит главным образом от природы растворителя. При переходе от углеводородов к хлорсодержащим растворителям выход нитросоединений уменьшается, но зато возрастает выход аммониевых солей, т. е. идет вовлечение молекулы растворителя в реакцию.

Схему взаимодействия О3 с первичным амином можно в общем виде представить уравнением:

C4H9NH2 + O3 → C4H9NO2 + O2.

Образование конечного нитросоединения требует расхода 3 молекул озона. Для сравнения константы скорости реакции озона с аммиаком в водных растворах (k = 39 л/моль) заметно ниже, чем у аминов (например, для анилина – k = 2,5·103 при t = 20 ºC).

Основные стадии реакции трибутилтиомочевины и ее аналогов с озоном можно представить упрощенной схнмой:

Наиболее легко реагируют нитроксильные радикалы. Поглощая 1 моль озона, они превращаются, главным образом, в нитросоединения.

При реакции озона с сернистыми соединениями, например, сульфидами (R-(–S–)n-R), тиомочевинами и тиосемикарбазидами (R-(R)-C=S) реакции протекают главным образом по атому серы. Для проведения реакции с дисульфидами и полисульфидами используют раствор в четыреххлористом углероде. При этом исходные сульфиды довольно легко реагируют с озоном с константой скорости k = 103 л/моль·с, близкой к фенолам и значительно больше скорости окисления группы -СН2- в алкильных заместителях. Основным продуктом первой стадии реакции является сульфооксид (=S=O), который далее может окисляться до сульфона (=S(=O)2), но со значительно меньшей скоростью (в 50÷100 раз). Константы скорости при взаимодействии озона с сульфидами, на примере диметилсульфида (CH3-S-CH3) - 1,5·103 л/моль·с, по сравнению с серой (S8) - 5,5 и этиловым спиртом (CH3CH2OH) - 10. Причем наблюдается уменьшение реакционной способности органических сернистых соединений в ряду: R-S-R, R-(S)2-RS8.

Озон взаимодействует и с элементоорганическими соединениями, например, кремния :

(C2H5)3Si-CH2-CH3+O3 ® (C2H5)3Si-CH-(OO·)-CH3 + OH·®(C2H5)3SiOOH + O=CH-CH3

или по второй реакции: ® (C2H5)3Si-(-O-O-O)-CH2 ® (C2H5)3SiO2 + OOCH2CH3.

При действии озона на полимерные материалы, особенно сильное воздействие происходит на эластомеры, содержащие С=С связи в главной цепи макромолекулы (например, каучуки). При действии О3 на полимеры имеющие насыщенную углеводородную цепь, особенно на их растворы (в CCl4 при t = 20 ºC), наблюдается падение молекулярного веса и накопление кислородсодержащих функциональных групп (кислот, кетонов и перекисей). Наиболее медленно реагируют с озоном полимеры, содержащие фенильные циклы в главной цепи, в то время как полициклические (полинафтилены, полиатрацены) или полимеры с гетероатомами (поликарбонат) вступают в реакцию значительно легче. В ряду полимеров с насыщенной углеводородной цепью скорость реакции возрастает от полиизобутилена к поливинилциклогексану, одновременно наблюдается уменьшение числа разрывов цепи. Самая большая константа скорости у полибутадиена и полиизопрена и у них же наименьшее число разрывов на один акт реакции. Некоторые полимеры нерастворимы в обычных растворителях (например, полиэтилен). Озонирование отличается от схемы термоокислительной деструкции полистирола тем, что низкие температуры и большие скорости образования радикалов создают условия, в которых доля цепных процессов составляет 15÷20 % в балансе реакции, а главная часть продуктов образуется при распаде пероксирадикалов. Кислоты составляют небольшую часть продуктов реакции и могут образовываться как в результате окисления феноксирадикалов или продуктов их превращений, так и в результате разрушения ароматических озонидов. Действие озона на другие полимеры (полиэтилен, поливинилциклогексан) сопровождается образованием перекисных радикалов. Деструкция ненасыщенных полимеров под действием О3 (например, каучуков, резин) происходит аналогично мономерам, т. е. по С=С связям.

4(СНО) 2 + 2 HN О 3 → 4СНОСООН + N 2 O + Н 2 О. (1.5)

Для инициирования начала реакции необходимо присутствие нитрата либо нитрита натрия, при взаимодействии которого с азотной кислотой выделяется необходимое для начала процесса количество закиси азота. Таким образом, нитрат или нитрит натрия играет роль катализатора. В ходе процесса окисления добавки азотнокислого натрия (либо другого соединения) не требуется, так как достаточное количество закиси азота образуется в результате взаимодействия ацетальдегида с азотной кислотой.

В качестве высокоселективного катализатора для превращения ацетальдегида в глиоксаль используется диоксид селена SeO 2 . В присутствии селенсодержащего катализатора наблюдается увеличение конверсии ацетальдегида с 4 до 10%. Однако регенерация SeO 2 представляет достаточно серьезную проблему, вследствие того, что в ходе процесса окисления образуются трудно восстанавливаемые органические соединения селена. Для повышения выхода целевого продукта в реакционную смесь добавляют муравьиную и уксусную кислоты в мольном соотношении с азотной кислотой от 0,5 до 1,16. Это позволяет увеличить выход глиоксаля до 50%. Следует отметить, что для данной реакции оптимальный температурный диапазон лежит в узких пределах 45 ÷ 48 о С. Дальнейшее увеличение температуры приводит к заметному уменьшению выхода целевого продукта.

В качестве катализаторов предложены соли металлов I группы Периодической системы: нитраты натрия, лития, серебра. Получаемая смесь продуктов представляет собой водный раствор альдегидов, уксусной кислоты, азотной и малого количества азотистой кислоты. Альдегидные соединения включают Глиоксаль, ацетальдегид и глиоксалевую кислоту.

Недостаток этого метода получения - периодичность процесса. Кроме того, важнейшей проблемой является очистка полученной смеси разнообразных продуктов. Для получения товарного продукта (40%-ный водный раствор глиоксаля) необходимо удалять из смеси азотную и уксусную кислоты, например, методом ионного обмена. Выделение глиоксаля из продуктов реакции стандартными методами невозможно. В мировой практике данная технология получения глиоксаля применяется очень ограниченно в связи с большими выбросами оксидов азота в атмосферу, которые разрушают озоновый слой, защищающий земную поверхность от УФ – излучения.

1.2.2 Озонирование бензола


Существуют разработки метода синтеза глиоксаля озонированием бензола эквивалентным количеством озона с дальнейшим гидрированием получаемых продуктов для получения глиоксаля. Бензол присоединяет озон, образуя триозонид - чрезвычайно взрывчатое вещество. Под действием воды озонид разлагается с образованием трех молекул глиоксаля по схеме :

Однако из-за высокой себестоимости получения озона и чрезвычайной взрывоопасности этот метод не представляет практической ценности.

1.2.3 Окисление глицерина хромовой кислотой

Еще одним возможным методом получения глиоксаля является окисление глицерина хромовой кислотой в присутствии серной кислоты при комнатной температуре. Наряду с глиоксалем образуется формальдегид в соответствии с уравнением реакции:

r 2 О 7 2- + ЗНОСН 2 СН(ОН)СН 2 ОН + 16Н 4 ↔ 4С r 3- + 3(СНО) 2 + ЗН 2 СО + 14 H 2 О (1.6)

Скорость реакции окисления возрастает с увеличением концентрации ионов водорода. Предполагается, что активной окисляющей формой в реакции (1.6) является шестивалентный хром однозарядного иона HcrO 3 - . При исследовании реакции окисления глицерина были обнаружены свободные радикал-ионы, показывающие, что реакция окисления глицерина шестивалентным хромом может проходить по механизму как одно-, так и трехэлектронного переноса.

Предположено, что окисление глицерина шестивалентным хромом может идти по следующему механизму.

Лекция 9.

Ароматическими первоначально называли органические соедине­ния, которые или сами имели приятный запах, или же выделялись из природных вешеств, обладающих приятным запахом. Впоследствии среди них были обнаружены соединения с приятным и неприятным запахом, а также соединения без запаха. Однако название за большой группой органических соединений, проявляющих сходные с бензолом свойства, сохранилось.

К ароматическим углеводородам или аренам относятся соединения, молекулы которых содержат одно или несколько бензольных колец.

В зависимости от числа бензольных циклов, входящих в состав молекулы, различают одноядерные (моноциклические) и многоядер­ные (полициклические) арены.

МОНОЯДЕРНЫЕ АРЕНЫ

Простейшим представителем одноядерных ароматических соеди­нений является бензол (С 6 Н 6).

Впервые бензол был получен английским ученым М. Фарадеем в 1825 г. из светильного газа, образующегося в процессе переработки каменного угля. Однако строение его молекулы в течение многих лет оставалось загадкой для химиков. Несмотря на то, что формула С 6 Н 6 предполагает достаточно выраженный ненасыщенный характер, бен­зол, в отличие от непредельных соединений, оказался относительно инертным веществом. Он сравнительно устойчив к нагреванию и дей­ствию окислителей, практически не вступает в характерные для нена­сыщенных соединений реакции присоединения. Наоборот, для бен­зола более характерными оказались не свойственные непредельным соединениям реакции замещения.



Составу С 6 Н 6 приписывались разные структурные формулы, но все они не объясняли в полной мере химических свойств бензола.

В 1865 г. немецкий химик Кекуле предложил формулу бензола, пред­ставляющую собой цикл из шести атомов углерода с чередующимися простыми и двойными связями:

Формула Кекуле предполагает равноценность всех атомов углеро­да и водорода в молекуле.

В соответствии с формулой Кекуле бензол должен иметь два 1,2- дизамещенных изомера:

Экспериментально же было установлено, что 1,2-дизамещенные производные бензола не имеют изомеров положения, т. е. они суще­ствуют в виде одного соединения.

Для объяснения этого противоречия в 1872 г. Кекуле выдвинул ос- цилляционную гипотезу, согласно которой двойные связи в молекуле не фиксированы, а непрерывно перемещаются (осциллируют) между двумя возможными положениями:

Правильно отображая некоторые свойства бензола, формула Ке­куле тем не менее не согласовывалась с рядом установленных фактов. Все это возвращало химиков к пересмотру структуры бензола.

В соответствии с современными представлениями, основанными на данных квантовой химии и физико-химических исследований, мо­лекула бензола представляет собой правильный плоский шестиуголь­ник. Все углеродные атомы находятся в состоянии sp 2 -гибридизации. За счет sp 2 -гибридизованных атомных орбиталей каждый атом углерода образует три σ-связи (одну с атомом водорода и две с соседними атома­ми углерода). Негибридизованная р-атомная орбиталь участвует в об­разовании ароматического секстета. Облака р-электронов имеют фор­му объемной восьмерки и расположены перпендикулярно плоскости цикла, которая разделяет их пополам.

Если посмотреть на проекцию π-электронной плотности сверху, то мы можем увидеть такую картину:

Образование замкнутой сопряженной системы (ароматического секстета) является для молекулы бензола энергетически выгодным. Экспериметально установлено, что сопряжение в цикле приводит к уменьшению энергии на 150.7 кДж/моль, по сравнению с рассчитанной для циклогексатриена. Эта разность составляет энергию сопряжения.

В бензольном кольце нет простых и двойных связей в прямом понима­нии этого слова. Такую связь называют ароматической. Если длина про­стой связи С-С в алканах составляет 0,154 нм, длина двойной связи в алкенах - 0,134 нм, то длина С-С связи в молекуле бензола равна 0,140 нм, т. е. является промежуточной между длиной одинарной и двойной связи.

Совокупность специфических свойств бензола - высокая стабиль­ность, инертность в реакциях присоединения, склонность к реакци­ям замещения, получила общее название «ароматичность», или «аро­матические свойства».

Что же требуется для того, чтобы мы имели право отнести соеди­нение к ароматическому ряду?

а) для проявления ароматического характера молекула должна прежде всего иметь плоское строение;

б) молекула должна иметь замкнутую сопряженную систему;

в) количество π-электронов должно соответствовать формуле 4n + 2, где п = 0, 1, 2, 3 и т. д. (данная закономерность была сформули­рована в 1931 г. немецким ученым Э. Хюккелем).

Номенклатура и изомерия

По заместительной номенклатуре ИЮПАК одноядерные арены рассматривают как производные бензола.

При наличии в кольце двух и более заместителей их положение указывают цифрами. Нумерацию атомов углерода бензольного коль­ца осуществляют таким образом, чтобы заместители имели возможно меньшие номера.

В дизамещенных производных бензола наряду с цифровым обозна­чением положений заместителей применяют приставки: орто (о-) поло­жение - 1,2; мета (м-) положение - 1,3 и пара (п-) положение - 1,4.

Кроме названий по заместительной номенклатуре сохранились и тривиальные названия: толуол, ксилол, кумол и др.

Одновалентные радикалы аренов имеют общее название-арилы (Аг). Двухвалентные радикалы бензола называют фениленами (о-, м-, п-).

Изомерия гомологов бензола обусловлена разными структурами, числом и положением заместителей в бензольном кольце.

Для однозамещенных гомологов бензола характерна изомерия, связанная с разной структурой заместителя.

Дизамещенные производные бензола существуют в трех изомер­ных формах, в зависимости от взаимного расположения в бензольном кольце (изомеры положения).

Для тризамешенных бензолов с одинаковыми заместителями в бен­зольном кольце существуют также три изомера:

Способы получения аренов

1. Циклотримеризация аминов

Ацетилен пропускают над активированным углем при повышен­ной температуре. Реакция была открыта Зелинским.

2. Обработка ацетона конц. H 2 S0 4

3. Дегидрогенизация алициклических соединений

Эта реакция показывает взаимосвязь между ароматическими и али- ииклическими соединениями.

4. Реакция Вюрца - Фиттига

Эта реакция чаще всего используется для получения гомологов бензола.

5. Алкилирование ароматических углеводородов по Фриделю - Крафтсу.

Физические свойства

Бензол и его низшие гомологи представляют собой жидкости, об­ладающие специфическим запахом. Ароматические углеводороды не растворимы в воде и хорошо растворяются в органических раствори­телях. Многие из них сами являются хорошими растворителями для других органических веществ. Из-за высокого содержания углерода горят коптящим пламенем.

Химические свойства

Реакционная способность бензола и его гомологов определяется главным образом наличием в структуре замкнутой π-электронной си­стемы, которая является областью повышенной электронной плотно­сти. Ароматические углеводороды, как и алкены, обладают нуклео­фильным характером. Однако, в отличие от ненасыщенных соедине­ний, при взаимодействии с электрофильными реагентами арены бо­лее склонны к реакциям замещения, а не присоединения, поскольку при этом сохраняется их ароматический характер. Эти реакции носят название реакций электрофильного замещения S E .


Реакции присоединения для аренов менее характерны, так как они приводят к нарушению ароматичности, с трудом вступают аромати­ческие углеводороды и в реакции оксиления.

1. Реакции электрофильного замещения (S E)

При атаке электрофильной частицей π-электронной системы бен­зольного кольца в результате электростатического взаимодействия образуется неустойчивый π-комплекс:

Далее электрофил «вырывает» пару электронов из ароматическо­го секстета бензольного ядра и между ним и одним из атомов углерода образуется σ-связь. Таким образом нарушается ароматичность бен­зольного ядра, образуется карбкатион - σ-комплекс.

Делокализаиию положительного заряда в σ-комплексе можно представить с помощью резонансных структур (I-111):

Образование σ-комплекса является наиболее высокоэнергетичной стадией реакции, определяющей ее скорость. σ-Комплекс не устойчив, он отщепляет протон от атома углерода, связанного с электрофилом, благодаря чему восстанавливается ароматичность бензольного кольца.

К наиболее важным реакциям S E относятся реакции нитрования, сульфирования, галогенирования, алкилирования и ацилирования.

1. Нитрование. В качестве нитрующих агентов чаше используют концентрированную азотную кислоту или смесь концентрированной азотной и серной кислот (нитрующая смесь):

Атакующей электрофильной частицей в реакции является ион нит- рония N0 2 + , который образуется в результате кислотно-основного вза­имодействия между азотной и серной кислотами, где азотная кислота играет роль основания:

Ион нитрония атакует π-электронную систему бензольного ядра. В результате реакции образуется нитробезол.

2. Сульфирование - это процесс замещения атома водорода в бен­зольном ядре на сульфогруппу - S0 3 H. Для сульфирования бензола и его гомологов применяют концентрированную серную кислоту или олеум (раствор триоксида серы S0 3 в серной кислоте):

Особенности механизма сульфирования аренов изучены недоста­точно. Однако экспериментальные данные свидетельствую о том. что атакующей электрофильной частицей служит триоксид серы SO 3

3. Галогенирование. Бензол и его гомологи хлорируются, бромиру- ются и йодируются. Замещение атома водорода в бензольном ядре на атом хлора или брома осуществляют в присутствии катализаторов - кислот Льюиса (AlCl 3 , FeBr 3 , ZnCl 2 и др.):

Под действием катализатора молекула галогена поляризуется. Ата­кующей электрофильной частицей служит либо комплекс поляризо­ванной молекулы галогена с кислотой Льюиса, либо катион галогена, образующийся в процессе ионизации данного комплекса:

4. Алкилирование по Фриделю - Крафтсу. Для введения алкильной группы в молекулу ароматического соединения в качестве электро- фильных реагентов чаше всего используют галогеналканы. Взаимо­действие происходит в присутствии катализаторов - кислот Льюиса:

Атакующей электрофильной частицей является карбкатион, который образуется при взаимодействии алкилирующего агента и катализатора:

Для алкилирования аренов также могут быть использованы спир­ты (реакции протекают в присутствии кислот Льюиса или минераль­ных кислот - H 3 P0 4 , H 2 S0 4) или алкены (в этом случае алкилирование требует присутствия кислот Льюиса и минеральной кислоты как источника протонов).

По своему механизму реакция алкилирования аналогична реак­циям нитрования, сульфирования и галогенирования.

5. Ацилирование по Фриделю - Крафтсу. Ацилированием называ­ют процесс введения в молекулу органического соединения ацильной

Ацилирование бензола и его гомологов обычно осуществляют га- логенангидридами карбоновых кислот в присутствии кислот Льюиса:

Электрофилом, атакующим бензольное кольцо, является либо ацилиевый ион , либо комплекс ацилгалогенида с катализа­тором

Для введения ацильной группы могут быть использованы и ангид­риды карбоновых кислот.

II. Реакции присоединения

Реакции присоединения не характерны для аренов, они протека­ют в жестких условиях.

/. Гидрирование. При повышенных температуре и давлении, в при­сутствии катализаторов (мелкопористый никель - никель Ренея) бен­зол и его гомологи присоединяют три молекулы водорода:

Остановить реакцию на стадии образования продуктов частично­го гидрирования невозможно, поскольку они гидрируются значитель­но легче, чем сам бензол.

2. Хлорирование. При интенсивном солнечном освещении или под действием ультрафиолетового излучения бензол присоединяет хлор. Реакция протекает по радикальному механизму с образованием гек- сахлорциклогексана:

III. Реакции окисления

1. Окисление бензольного цикла. Бензольное кольцо устойчиво к дей­ствию окислителей. В обычных условиях ни перманганат калия, ни азот­ная кислота, ни оксид хрома (VI), ни другие сильные окислители не окисляют бензол. В жестких же условиях, например, при действии кис­лорода воздуха в присутствии оксида ванадия (V 2 0 5), при температуре 400-500 °С бензольное ядро окисляется, образуя малеиновый ангидрид:

2. Окисление гомологов бензола. Алкилбензолы, в отличие от незаме­щенного бензола, окисляются значительно легче. В этом случае при дей­ствии сильных окислителей (КМп0 4 , К 2 Сг 2 0 7 и др.) подвергаются окис­лению боковые цепи:


Продуктами реакции являются ароматические карбоновые кис­лоты. Каждый алкильный радикал в бензольном кольце, независимо от длины углеродной цепи, окисляется до карбоксильной группы.

3. Озонирование. Подобно алкенам, бензол и его гомологи реаги­руют с озоном, образуя продукты присоединения, - триозониды:

Триозониды взрывоопасны. Это маслянистые жидкости, они не­стойкие и под действием влаги разрушаются с образованием дикарбонильных соединений и продуктов их дальнейшего окисления - дикарбоновых кислот.

Правила ориентации в бензольном ядре

В молекуле незамещенного бензола электронная плотность рас­пределена равномерно, поэтому электрофильный реагент может ата­ковать в равной степени любой из шести атомов углерода.

Если же в бензольном кольце содержится какой-либо заместитель, то под его влиянием происходит перераспределение π-электронной плотности и новый заместитель вступает в определенные положения по отношению к имеющемуся.

По влиянию на направление реакций электрофильного замеще­ния и реакционную способность бензольного кольца заместители мож­но разделить на две группы - заместители I рода (орто-, пара-ориентанты) и заместители II рода (мета-ориентанты).

Заместители I рода - атомы и атомные группы, проявляющие по­ложительный индуктивный (+/) или положительный мезомерный (+М)эффекты (доноры электронов):

Заместители 1 рода (за исключением галогенов) увеличивают элек­тронную плотность в бензольном кольце, тем самым активируют его в реакциях S Е и направляют следующие заместители в орто- и пара- положения.

Заместители II рода - группы, проявляющие отрицательный ин­дуктивный (-1) или отрицательный мезомерный (-М) эффекты (элек- троноакцепторы):

Заместители II рода уменьшают электронную плотность в бен­зольном ядре и снижают скорость реакций S E по сравнению с незаме­щенным бензолом. Вновь входящий заместитель направляется преиму­щественно в мета-положение.

При введении третьего заместителя необходимо учитывать при­роду двух уже имеющихся в бензольном ядре.

УДК 541.13: 669.871.4

Д.С. Гуров, А.В. Даровских, А.Г. Миков, В.И. Скудаев

Пермский национальный исследовательский политехнический университет

ИК-СПЕКТР ПРОДУКТОВ ОЗОНИРОВАНИЯ БЕНЗОЛА

Методом ИК-спектроскопии исследован процесс озонирования бензола. Обнаружено появление новых полос поглощения, отнесенных к колебаниям по связям С-Н и С=0 в продуктах озонирования. Наблюдалось образование нерастворимых озонидов бензола. Высказаны предположения о возможных направлениях процесса.

Ароматические углеводороды, одним из которых является бензол, служат сырьем для производства различных материалов, пластических масс, красителей, медикаментов, средств защиты растений, в производстве взрывчатых веществ, фармацевтических препаратов и др. В то же время бензол и его производные присутствуют как вредные компоненты в отходах предприятий, производящих эти материалы. Реакция бензола с озоном представляет интерес как в целях получения продуктов его озонирования, так и с целью обезвреживания отходов.

Известно, что озон устойчив к действию таких окислителей, как HMnO4, H2O2, OsO4 и др. . При взаимодействии с озоном образуются озониды, которые в присутствии воды на цинковом катализаторе распадаются до глиоксаля . Процесс окисления углеводородов в жидкой фазе протекает по цепному механизму с образованием на начальной стадии гидроперекисей . Опубликована работа по исследованию влияния озонирования на изменение компонентного состава каменноугольного сырого бензола с содержанием бензола около 30 % , из которой, однако, не ясно, что при этом происходит с самим бензолом.

Озонирование бензола проводили в реакторе барботажного типа. В стеклянный реактор диаметром 20 мм заливали 30 мл бензола, озон получали в озонаторе, через который пропускали кислород. Объемная скорость подачи озонокислородной смеси составляла 100 мл/мин при концентрации озона 1,5 % (0,61 моль/м). Процесс проводили при температуре 25 °С, пробы продуктов отбирали с помощью шприца и растворяли в тетрахлориде углерода в соотношении 5 мл пробы на 100 мл раствори-

теля. Раствор пробы помещали в кювету для жидкости с окнами КБг с постоянной толщиной слоя жидкости 0,171 мм и снимали ИК-спектр.

По окончании процесса на поверхности раствора и на стенках реактора обнаружен осадок светло-желтого цвета, который является, по-видимому, смесью озонидов бензола.

На рисунке приведены спектры бензола до начала озонирования и проб продуктов озонирования.

Волновое число, см-1

Рис. ИК-спектры раствора бензола и продуктов его озонирования в тетрахлориде углерода. Время озонирования, ч: 1 - 0; 2 - 2

Тетрахлорид углерода в области более 1550 см-1 не поглощает ИК-излучение. Бензол поглощает в области от 3000 до 3050 см-1. В процессе озонирования в спектрах продуктов появляется полоса с волновым числом 2900 см-1, относительная интенсивность этой полосы по сравнению с полосой бензола 3000 см-1 со временем увеличивается: через 0,5 ч - 0,05, через 1 ч - 0,09, через 1,5 ч - 0,12, через 2 ч -

0,15, через 2,5 ч - 0,16. Согласно литературным данным , эта полоса может быть отнесена к колебаниям по связи С-Н либо по связи О-Н в продуктах окисления бензола в группе, не связанной с кольцом. Вто-

рая новая полоса с заметно возрастающей интенсивностью и с волновым числом 1700 см-1 может быть отнесена к колебаниям по двойной связи С=0 в карбонильной или карбоксильной группе. Поэтому в продуктах озонирования бензола можно ожидать наличия смеси карбоновых кислот, ангидридов, альдегидов и кетонов.

В качестве основной схемы процесса взаимодействия бензола с озоном при 25 °С, как и с кислородом при 400 °С на катализаторе У205, возможно образование смеси малеиновой кислоты и ее ангидрида:

Проведенное исследование показало, что бензольное кольцо, устойчивое к действию многих окислителей, разрушается озоном при обычных температурах.

Список литературы

1. Березин Д.Б., Березин Б.Д., Курс современной органической химии. - М.: Высшая школа, 2001. - 768 с.

2. Разумовский С.Д., Заиков Г.Е. Озон и его реакции с органическими соединениями. - М.: Наука, 1974. - 322 с.

3. Эмануэль Н.М., Денисов Е.Т., Майзус З.К. Цепные реакции окисления углеводородов в жидкой фазе. - М.: Наука, 1965. - 280 с.

4. Семенова С.А., Патраков Ю.Ф. Влияние озонирования на изменение компонентного состава каменноугольного сырого бензола // Журн. прикл. химии. - 2007. - Т. 80, вып. 5. - С. 871-875.

5. Иоффе Б.В., Костиков Р.Р., Разин В.В. Физические методы определения строения органических соединений: учеб. пособие для хим. вузов / под ред. Б.В. Иоффе. - М.: Высшая школа, 1984. - 336 с.

Молекула органического соединения и молекула простого или сложного вещества соединяются в новую молекулу: Такие реакции обозначаются А - addition [присоединение]. Например, бромирование пропена: К реакциям присоединения относятся также реакции полимеризации: Например, образование полиэтилена:...
(ОРГАНИЧЕСКАЯ ХИМИЯ)
  • Реакции присоединения
    Реакции присоединения по двойной связи в общем виде можно представить следующим образом: По этой схеме к двойным углерод-углеродным связям могут присоединяться: водород (Н2), галогены (Cl2, Br2, С1Вг, СП), вода (Н20), галогеноводороды (НС1, HBr, HI), серная кислота (H2S04), кислород (02) и г.д. Большая...
    (ОРГАНИЧЕСКАЯ ХИМИЯ)
  • Реакция озонирования Гарриеса
    Озон 03 легко присоединяется по месту двойной связи с образованием циклических перекисей - озопидов : Озониды очень неустойчивы, легко взрываются. Обычно их не выделяют, а сразу после получения разлагают водой: Перекись водорода окисляет образующиеся альдегиды до карбоновых кислот: Озонирование...
    (ОРГАНИЧЕСКАЯ ХИМИЯ)
  • Строение бензола
    Сопоставляя все имеющиеся в настоящее время сведения, относящиеся к бензолу и его гомологам, строение бензола можно представить следующим образом. Все атомы углерода в бензоле находятся в состоянии sp2- гибридизации. Каждый из них образует три обычные с-связи (две связи С-С и одну С-Н с углом...
    (ОРГАНИЧЕСКАЯ ХИМИЯ)
  • Парциальное газофазное окисление метан-углеводородных смесей и гомологов метана
    Реальные природные газы, в том числе используемые в химических процессах, содержат примеси различных углеводородов, в основном гомологов метана. Поскольку из-за большого различия в прочности химических связей даже ближайшие гомологи метана сильно отличаются от него по реакционной способности и ряду других...
  • Кинетический анализ парциального окисления метана и его гомологов в синтез-газ
    В последнее время наряду с каталитическими методами окислительной конверсии метана в синтез-газ в ряде промышленных процессов, особенно в небольших компактных установках по получению водорода, стало применяться его газофазное парциальное окисление. Однако часто применяемые термодинамические методы расчета...
    (ОРГАНИЧЕСКАЯ ХИМИЯ: ОКИСЛИТЕЛЬНЫЕ ПРЕВРАЩЕНИЯ МЕТАНА)