Самовозгоранию вещества выделяющие воспламеняющиеся газы. Самовозгорание веществ и материалов. Способы и средства тушения пожаров

Наименование параметра Значение
Тема статьи: Самовозгорание.
Рубрика (тематическая категория) Образование

Самовозгорание представляет собой процесс низкотемпературного окисления дисперсных материалов, заканчивающийся тлением или пламен-ным горением . Склонность к самовозгоранию веществ определяется ком-плексом их физико-химических свойств : теплотой сгорания, теплоемкостью, теплопроводностью, удельной поверхностью, объёмной плотностью и условиями теплообмена с внешней средой.

Для развития процесса самовозгорания: решающее значение имеет возможность накопления в материале тепла, выделяющегося при окислении (или деятельности микроорганизмов). Чем лучше условия аккумуляции теп-ла, тем раньше при более низкой температуре начинается самовозгорание.

Процессы самовозгорания развиваются в материалах при довольно низ-кой температуре (до 250 о С ) в течение длительного времени. В таких услови-ях для поддержания процесса самовозгорания недостаточно тепла, выде-ляющегося при окислении внешней поверхностью. Обязательным условием является вовлечение в реакцию окисления или разложения всœей массы мате-риала. И чем больше масса, тем легче развивается в ней процессы самонагре-вания и самовозгорания. Увеличение температуры окружающей среды со-кращает время до самовозгорания.

Можно выделить два механизма самовозгорания :

Тепловое самовозгорание состоит в следующем. Многие дис-персные материалы взаимодействуют с кислородом воздуха уже при обыч-ной температуре. В условиях , благоприятствующих накоплению тепла в мас-се материала, происходит повышение температуры. Это в свою очередь по-вышает скорость реакций окисления, повышая при этом температуру и т. д. В итоге может произойти самовозгорание материала .

Тепловое самовозгорание – физико-химический процесс, скорость ко-торого зависит 1 ). от скорости химической реакции,2 ). поступления кислорода к реагирующей поверхности и от 3 ).интенсивности теплообмена материала с окружающей средой.

При хранении дисперсных материалов на воздухе кислород проникает вовнутрь материала между частицами. Попадая в поры, кислород адсорбируется в поверхностном слое, что вызывает повышение температуры. Наличие развитой поверхности твердого материала с адсорбированным на ней кислородом является необходимым условием для начала теплового самовозгорания.

Существенную роль в развитии процесса самовозгорания играют по-ристость и адсорбционная способность материала . Чем больше пор, тем больше развита поверхность контакта и адсорбция на ней кислорода. По этой причине наиболее склонны к самовозгоранию материалы с большей пористостью.

Саморазогрев массы материала неоднороден . Вследствие разных условий теплоотвода, а).центральная зона объёма нагревается быстрее, чем поверхность, и на начальной стадии самовозгорания характерно сохранение внешнего вида материала, хотя внутри происходит обугливание . Далее на обугленной поверхности развиваются процессы тления , которые могут перейти в пламенное горение . Поскольку промежуточным продуктом при самовозгорании большинства органических веществ является уголь , то главную роль играют закономерности самовозгорания угля.

Следует отметить, что значительную роль в самовозгорании угля игра-ет его способность адсорбировать пары воды из окружающего воздуха. Установлено, что при этом уголь может нагреваться до 65-70 о С . К примеру, при адсорбировании 0,01 г Н 2 О выделится 22,6 Дж тепловой энергии.

Ускорению процесса самовозгорания способствует А).накопление тепла, б).развитая поверхность, в).легкая воспламеняемость, то есть малая энергия активации, и г).повышение температуры. Вместе с тем, самовозгорание развивается и при наличии в веществе д).примеси.

К примеру, в случае если в аммиачной селитре (NH 4 NO 3) примесей нет, то ее пе-ревозка и хранение безопасны. Температура разложения лежит в пределах 200 о С . Но при малых добавках органики или частиц металлов начинается автокаталитическое разложение , и селитра самовозгорается при 110 о С . Считают, что автокатализ вызывают выделяющиеся СО 2 и водяной пар. Добавка масел в селитру также вызывает взрывчатое её разложение (в связи с этим её применяют для приготовления взрывчатки).

Большую роль в опасности самовозгорания !!! играет длительность периода до самовозгорания . У разных веществ она различна.

Микробиологическое самовозгорание. К микробиологическому са-мовозгоранию склонны, главным образом, материалы растительного происхождения. Οʜᴎ служат питательной средой для бактерий и грибов.

Возможности развития микробиологического процесса ограничены, так как температура самонагревания материала не должна превышать 75 о С . По-скольку при более высокой температуре микроорганизмы, как правило, по-гибают. Примерами микробиологического самовозгорания можно назвать обугливание пшеницы в буртах , самонагрев навозной кучи и т. п .

В самовозгорании угля могут участвовать и адсорбция, и микроорга-низмы (в начальной стадии), и примеси. Так, существовали теории, что при-чинами самовозгорания угля является сульфиды желœеза (FeS), карбонаты же-леза Fe(CO) 4 и др.
Размещено на реф.рф
Сегодня считают, что в основном влияют при-меси желœеза, независимо от вида его химических соединœений.

Основными показателями, характеризующими опасность самовозгора-ния веществ, являются рассмотренные нами в теме 4:

· температура самонагревания;

· температура тления;

· условия теплового самовозгорания;

· способность взрываться и гореть при контакте с водой, кислородом воздуха и другими окислителями .

Последний показатель качественно характеризует особую пожарную опасность веществ, называемую пирофорностью.

К пирофорным относятся вещества,имеющие температуру самовос-пламенения ниже температуры окружающей среды , в отличие от большинства веществ, которые самовоспламеняются только в результате нагрева извне. Само возгорающие вещества очень пожароопасны .

Самовозгорающие вещества можно разделить на три группы:

1. Самовозгорающиеся при соприкосновении с воздухом: фосфор, сер-нистые металлы, порошок магния, уголь, са­жа и др.
Размещено на реф.рф
К примеру, в трассирую-щих пулях, фейерверках используются самовозгорающиеся вещества.

2. Воспламеняющиеся при соприкосновении с водой - ϶ᴛᴏ щелочные металлы, их карбиды, и др.
Размещено на реф.рф
К примеру, карбид кальция, применяемый в аце-тиленовых генераторах. Негашеная известь не горит, но выделяющееся при её реакции с водой тепло может нагреть материалы до температуры само-воспламенения.

3. К третьей группе относятся органические соединœения, которые вос-пла­меняются при контакте с кислородом и другими окислителями (хлором, бромом, окислами азота); это масла . Сюда относятся и вещества, получаемые в результате эндотермических реакций, к примеру, ацетилен, которые при воздействии тепла или удара разлагаются с возможным возникновением взрыва.

Самовозгорание. - понятие и виды. Классификация и особенности категории "Самовозгорание." 2017, 2018.

Горение - это химическая реакция окисления, сопровождающаяся выделением большого количества тепла и обычно свечением. Окислителем в процессе горения может быть кислород, а также хлор, бром и другие вещества.

Возгорание - возникновение горения под воздействием источника зажигания.

Воспламенение - возгорание, сопровождающееся появлением пламени.

Самовозгорание, возникновение горения в результате самонагревания горючих твердых материалов, вызванного самоускорением в них экзотермических реакций. Самовозгорание происходит из-за того, что тепловыделение в ходе реакций больше теплоотвода в окружающую среду.

Начало самовозгорания характеризуется температурой самонагревания (Tсн), представляющей собой минимальную в условиях опыта температуру, при которой обнаруживается тепловыделение.

При достижении в процессе самонагревания определенной температуры, называемой температурой самовозгорания (Tсвоз), возникает горение материала, проявляющееся либо тлением, либо пламенным горением. В последнем случае Tсвоз адекватна температуре самовоспламенения (Tсв), под которым понимают возникновение горения газов и жидкостей при нагревании до некоторой критической температуры. В принципе самовозгорание и самовоспламенение по физической сущности сходны и различаются лишь видом горения, самовоспламенение возникает только в виде пламенного горения.

В случае самовоспламенения самонагревание (предвзрывной разогрев) развивается в пределах всего нескольких градусов и поэтому не учитывается при оценке пожаровзрывоопасности газов и жидкостей. При самовозгорании область самонагревания может достигать нескольких сотен градусов (например, для торфа от 70 до 225 °С). Вследствие этого явление самонагревания всегда учитывается при определении склонности твердых веществ к самовозгоранию

Самовозгорание изучают путем термостатирования исследуемого материала при заданной температуре и установления зависимости между температурой, при которой возникает горение, размерами образца и временем его нагрева в термостате.

Основные огнетушащие средства

К огнетушащим веществам относятся, прежде всего, вода, огнетушащие пены (химическая и воздушно-механическая), инертные газы, двуокись углерода и твердые огнетушащие вещества.

Вода . По сравнению с другими огнетушащими веществамивода имеет небольшую теплоемкость и пригодна для тушения большинства горючих веществ: один литр воды при нагревании от 0 до 100°С поглощает 419 кДж теплоты, а при испарении - 2260 кДж. Вода обладает достаточной термической стойкостью (свыше 1700°С) и по этому показателю она технически ценнее многих других огнетушащих веществ. Вода обладает тремя свойствами огнетушения: охлаждает зону горения или горящие вещества, разбавляет реагирующие вещества в зоне горения, изолирует горючие вещества от зоны горения.

Водяной пар в зоне горения уменьшает концентрацию кислорода, поддерживающего горение. Для борьбы с огнем вода может применяться в виде цельной, компактной, а также рассеянной струи.

Для тушения пожаров водой на крупных промышленных предприятиях, а также лесных пожаров может использоваться авиация. Например, самолеты ИЛ-76, оборудованные специальным сливным устройством, вмещают в себя до 40 т воды и могут выливать ее в точно намеченное место, создавая сплошную полосу воды шириной и длиной до 1000 м.

Следует помнить, что вода не всегда может быть использована для тушения огня, так как не все горящие предметы и вещества можно тушить водой.

Нельзя применять воду при тушении пожара в зданиях, где находятся вещества, вступающие с водой в химическую реакцию, в результате которой может произойти воспламенение пожароопасных газов или подняться (развиться) большая температура.

Нельзя тушить водой легковоспламеняющиеся и горючие жидкости с удельным весом меньше 1, потому что вода тяжелее и будет опускаться вниз, а горящая жидкость подниматься вверх, переливаться через края и увеличивать зону горения.

Вода электропроводна, поэтому нельзя тушить водой установки, находящиеся под током, чтобы не быть им пораженным и избежать короткого замыкания.

Когда для ликвидации возгораний нельзя использовать воду, применяют огнетушащие пены.

Пена - это смесь газа с жидкостью. Пузырьки газа могут образовываться в результате химических процессов или механического смешения газа с жидкостью. Чем меньше размеры образующих пузырьков и сила поверхностного натяжения пленки жидкости, тем более устойчива пена. При небольшой плотности (0,1-0,2 г/см) пена растекается по поверхности горючей жидкости, изолируя ее от пламени. В итоге прекращается поступление паров в зону горения при одновременном охлаждении поверхности жидкости.

Химическая пена . Образуется при взаимодействии карбоната и бикарбоната натрия с кислотой в присутствии пенообразователя. Такую пену получают в эжекторных переносных приборах (пеногенераторах) из пенопорошка и воды. Пенопорошок состоит из сухих солей (сернокислотного алюминия, бикарбоната натрия) и лакричного экстракта, или другого пенообразующего вещества, который при взаимодействии с водой растворяется и немедленно реагирует с образованием двуокиси углерода. В результате выделения большого количества двуокиси углерода получается плотный покров устойчивой пены (слой толщиной 7-10 см), малоразрушающийся от действия пламени, не взаимодействующий с нефтепродуктами и не пропускающий пары жидкости.

Воздушно-механическая пена (ВМП) представляет собой смесь воздуха, воды и пенообразователя. Она может быть обычной - 90% воздуха и 10% водного раствора пенообразователя (кратность до 12%) и высокократной - 99% воздуха, около 1% воды и 0,04% пенообразователя (кратность 100% и больше). Стойкость воздушно-механической пены несколько меньше, чем пены химической. Стойкость уменьшается с увеличением показателя кратности пены. Огнетушащее действие воздушно-механической пены основано на термовлагоизоляции и охлаждении горючих веществ. На поверхности горящих жидкостей пена образует устойчивую пленку, не разрушающуюся под действием пламени в течение 30 минут, что достаточно для тушения горючих и легковоспламеняющихся жидкостей в резервуарах любых диаметров. Воздушно-механическая пена совершенно безвредна для людей, не вызывает коррозии металлов, практически электронейтральна и весьма экономична. Ее применяют также для тушения твердых горючих веществ - таких, как дерево, химические волокна и другие.

Тушение инертными газами . Инертные газы и водяной пар обладают свойством быстро смешиваться с горючими парами и газами, понижая при этом концентрацию кислорода, способствуя прекращению горения большинства горючих веществ. Огнетушащее действие инертных газов и водяного пара объясняется также тем, что они разбавляют горючую среду, снижая при этом температуру в очаге пожара, в результате чего происходит затруднение процесса горения.

Двуокись углерода широко применяют для ускорения ликвидации очага горения (в течение 2-10 секунд), что особенно важно при тушении небольших по площади поверхностей горючих жидкостей, двигателей внутреннего сгорания, электродвигателей и других электротехнических установок, а также для предупреждения воспламенения и взрыва при хранении легковоспламеняющихся жидкостей, изготовлении и транспортировке горючих пылей (например, угольных). Для тушения пожаров двуокисью углерода используются автоматические стационарные установки, а также ручные передвижные и переносные огнетушители.

Твердые огнетушащие вещества. Для ликвидации небольших очагов возгораний веществ, не поддающихся тушению водой и другими огненейтрализующими средствами, применяют твердые вещества в виде порошков. К ним относятся хлориды щелочных и щелочноземельных металлов (флюсы), альбумин - содержащие вещества, сухой остаток от выпаривания сульфатных щелочей, карналлит, двууглекислые и углекислые соды, поташ, кварцы, твердая двуокись углерода, песок, земля и другие. Огнетушащее действие порошкообразных веществ заключается в том, что они при плавлении, сопровождаемом образованием пленки, и своей массой изолируют зону пожара, затрудняют доступ воздуха к нему, охлаждают горючее вещество, механически сбивают пламя. Возле места их хранения надо иметь не менее 1-2 лопат.

Задача № 3

Определить предел огнестойкости несгораемых строительных материалов четырёхэтажного здания фабрики для случая тушения пожара стандартными установками. Площадь отсеков между противопожарными стенами F ст =1300 м 2 , расход огнегасительных средств G=85 л/с, интенсивность огнетушительных средств I=0,1 л/(м 2 с). Время горения до начала тушения 10 мин.

1. Нормальная продолжительность тушения пожара:

2. Предел огнестойкости:

При К=2, К=1 и К=0,5 для стен и колонн, для перекрытий и покрытий и для перегородок соответственно получаем:

Щелочные металлы, окисляясь на воздухе, самовозгораются с образованием надпероксидов металлов:
К + 02 -» К02 + 283.8 кДж/моль.
Сульфиды щелочных (например, калия) и щелочноземельных металлов (например, кальция) также окисляются на воздухе и могут самовозгораться. Гидроксиды металлов окисляются во влажном воздухе с образованием пероксида водорода. Негорючий гидросульфит натрия во влажном воздухе образует серу, которая воспламеняется.
К характерным представителям этой группы относятся белый и красный фосфор. Белый фосфор, имеющий температуру самовоспламенения 45 °С, более опасен, чем красный (его температура самовоспламенения 240 °С). Белый фосфор (и его пары) на воздухе быстро самовозгорается, с повышением температуры давление паров возрастает. Это может привести к разрыву сосуда, в котором он хранится или используется.
Легко самовозгораются на воздухе, особенно в присутствии влаги, аэрогели алюминия и цинка. Алюминиевая и ма1ниевая пудра в воздухе образуют взрывчатые смеси.
Диэтиловый эфир способен самовозгораться в воздухе, что связано с образованием пероксидов.
Самовозгорание олиф, а также растительных масел (льняного, подсолнечного) связано с их химическим строением. Они представляют собой смесь глицеридов жирных кислот, в том числе и непредельных (олеиновой, линолевой, линоленовой). Наличие в молекулах двойных связей и является причиной окисления указанных кислот при обычной температуре. Самовозгоранию способствует полимеризация глицеридов непредельных кислот - экзотермический процесс, происходящий при низких температурах.
Наличие глицеридов жирных кислот в животных (тюленьем, дельфиньем, моржовом) и рыбьих жирах обусловливают их способность к самовозгоранию. Однако масла и жиры способны к самовозгоранию только при значительном содержании в них глицеридов непредельных кислот, достаточной поверхности окисления масел и жиров, малой теплоотдаче и если ими пропитаны горючие материалы и промасленный материал уплотнен.
При хранении высокомолекулярных непредельных веществ в бочках, бутылях или канистрах самовозгорания не происходит, что связано с малой площадью поверхности соприкосновения с воздухом. Если же эти вещества нанести на волокнистые или пористые материалы, то вследствие увеличения поверхности окисления произойдет самовозгорание. При этом важным параметром является величина соотношения S/F (где S - площадь поверхности окисления; F - площадь поверхности теплоотдачи). Так, для самовозгорания растительных масел на стеклянной вате это соотношение должно быть не менее 90, а хлопковой вате - не менее 50.
В связи со способностью масел и жиров самовозгораться большую опасность представляют промасленная одежда и обтирочные материалы, загрязненные расти гельными маслами. При большой поверхности загрязнения, на которой масло распределено тонким слоем, резко ускоряются реакции окисления и полимеризации. Процессы нагревания начинаются уже при 10 - 15 °С и, продолжаясь несколько часов, заканчиваются самовозгоранием.

Несгораемые материалы - материалы, которые под действием огня или высоких температур не воспламеняются, не тлеют и не обугливаются, но могут сильно деформироваться.

Трудносгораемые материалы - материалы, которые под действием огня тлеют и обугливаются, но после удаления источника огня эти процессы прекращаются.

Сгораемые материалы - материалы, которые под действием огня воспламеняются или тлеют и продолжают гореть или тлеть и после удаления источника огня.

Огнестойкость - способность изделия, конструкции или элемента сооружения сохранять при пожаре несущую и огнепреграждающую способность.

Повышение огнестойкости конструкций до требуемого уровня осуществляется с помощью соответствующей огнезащиты:

а) бетонирование, оштукатуривание, обкладка кирпичом – конструктивный способ;
б) облицовка объекта огнезащиты штатными материалами или установка огнезащитных экранов на относе
в) нанесение непосредственно на поверхность объекта огнезащитных покрытий (окраска, обмазка, напыление);
г) пропитка подповерхностных слоев конструкций огнезащитным составом;
д) комбинированный (композиционный) способ, представляющий собой рациональное сочетание различных способов.

Химическое самовозгорание веществ. Причины и профилактика

Х имическое самовозгорание связано со способностью веществ и материалов вступать в химическую реакцию с воздухом или другими окислителями при нормальных условиях с выделением теплоты, достаточной для их возгорания. Наиболее характерными примерами являются случаи самовозгорания промасленной ветоши или фосфора на воздухе, легковоспламеняющихся жидкостей при контакте с марганцовкой, древесных опилок с кислотами. Д ругой вид химических реакций веществ связан с взаимодействием воды или влаги. При этом также выделяется достаточная для самовозгорания веществ и материалов температура. Примерами могут служить такие вещества, как калий, натрий, карбид кальция, негашеная известь. Особенностью щелочноземельных металлов является их способность гореть и без доступа кислорода. Необходимый для реакции кислород они добывают сами, расщепляя под действием высокой температуры влагу воздуха на водород и кислород. Вот почему тушение водой таких веществ приводит к взрыву образующегося водорода.

4. Пена как средство пожаротушения

Воздушно-механическая пена как средство пожаротушения состоит из пузырьков газа, оболочка которых содержит 3-5%й водный раствор пенообразователя. Пены применяют для тушения твердых и жидких горючих веществ, не вступающих во взаимодействие с водой, и в первую очередь для тушения нефтепродуктов. Пожаротушащий эффект пены основан на охлаждении очага пожара водой, а так же частичном изолировании зоны горения от доступа свежего воздуха.

К достоинствам пены как средства пожаротушения можно отнести длительность сохранения пеной своей структуры и объема, что позволяет производить как площадное так и объемное пожаротушение; возможность дистанционного воздействия на очаг пожара; способность пены перемещаться на значительные расстояния и проникать в труднодоступные места

Огнетушащие свойства пены в большой степени определяются её кратностью и стойкостью. Кратность - отношение объема пены к объему жидкой фазы. Стойкость - сопротивляемость пены процессу разрушения и оценивается продолжительностью выделения из пены 50% жидкой фазы. С повышением кратности пены стойкость снижается. Стойкость пены средней кратности составляет порядка 2х часов. Стойкость может быть повышена путем введения стабилизирующих добавок. Пена электропроводна, поэтому тушить ею установки под напряжением запрещается.

5. Пожарная опасность открытого пламени, газов, искр. Причины возникновения и профилактика.

Пожарная опасность промышленных или гражданских объектов – возможность возникновения и развития пожара, а также его последствия, определяемые опасными для людей факторами и нанесенным материальным ущербом. Пожарная опасность объектов определяется пожарной опасностью применяемых веществ и материалов, условиями их использования, параметрами и особенностями технологических процессов, пожарной нагрузкой, а также объемно-планировочными и конструктивными параметрами самих объектов. Пожарная опасность веществ и материалов характеризуется их способностью к распространению пламени концентрационными и температурными пределами воспламенения и другими показателями - вспышками температуры, температурами воспламенения, самовоспламенения и тления, склонностью к самовозгоранию. Самый опасный источник пожара – открытое пламя, вызывающее зажигание различных горючих систем практически во всех случаях. Поэтому при необходимости проведения ремонтных огневых работ предусмотрены особые меры предосторожности.

Наиболее распространенные источники зажигания – электрические разряды, поэтому требования к электрооборудованию строго регламентированы. Искры, образуемые при разрядах статического электричества, также могут быть источником зажигания. Накопление электрических зарядов происходит при трении материалов. Для защиты от статической электризации предусмотрены меры по предотвращению образования зарядов - ограничение скоростей перемещения диэлектриков по трубопроводам, очистка газовых потоков от твердых частиц, заземление технологического оборудования, применение антистатиков и их быстрой нейтрализации - увлажнение среды, ионизация воздуха. Искры, возникающие в результате трения и удара, представляют собой горящие частицы, отрываемые при механических воздействиях на твердые материалы. При этом искры от удара более опасны, чем искры от трения. Опасность механических искр определяется природой трущихся или соударяемых материалов. Наиболее опасны углеродосодержащие материалы и их сплавы. Для предупреждения образования механических искр во взрывоопасных цехах допускается применение лишь омедненного или луженого инструмента, а трущиеся части машин должны быть выполнены из разнородных материалов. В таких помещениях полы изготовляют из неискрящих материалов, а обслуживающий персонал может находиться только в специальной обуви, подбитой медными гвоздями.

6. Классификация производств по степени пожаро- и взрывоопасности

А взрыво- пожароопасная

Горючие газы, легковоспламеняющиеся жидкости с температурой вспышки не более 28° С в таком количестве, что могут образовывать взрывоопасные парогазовоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа. Вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или один с другим в таком количестве, что расчетное избыточное давление взрыва в помещении превышает 5кПа.

Б взрыво- пожароопасная

Горючие пыли или волокна, легковоспламеняющиеся жидкости с температурой вспышки более 28° С, горючие жидкости в таком количестве, что могут образовывать взрывоопасные пыле- или паро-воздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа.

В1 - В4 пожароопасная

Горючие и трудногорючие жидкости, твердые горючие и трудногорючие вещества и материалы, способные при взаимодействии с водой, кислородом воздуха или один с другим только гореть при условии, что помещения, в которых они имеются в наличии или обращаются, не относятся к категориям А или Б

Негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени, горючие газы, жидкости и твердые вещества, которые сжигаются или утилизируются в качестве топлива

Негорючие вещества и материалы в холодном состоянии

7. Классификация пыли и горючих веществ

Вещества, способные самостоятельно гореть после удаления источника зажигания, называются горючими в отличие от веществ, которые на воздухе не горят и называются негорючими. Промежуточное положение занимают трудно горючие вещества, которые возгораются при действии источника зажигания, но прекращают горение после удаления последнего.

Все горючие вещества делятся на следующие основные группы.

1. ГОРЮЧИЕ ГАЗЫ (ГГ) - вещества, способные образовывать с воздухом воспламеняемые и взрывоопасные смеси при температурах не выше 50° С. К горючим газам относятся индивидуальные вещества: аммиак, ацетилен, бутадиен, бутан, бутилацетат, водород, винилхлорид, изобутан, изобутилен, метан, окись углерода, пропан, пропилен, сероводород, формальдегид, а также пары легковоспламеняющихся и горючих жидкостей.

2. ЛЕГКОВОСПЛАМЕНЯЮЩИЕСЯ ЖИДКОСТИ (ЛВЖ) - вещества, способные самостоятельно гореть после удаления источника зажигания и имеющие температуру вспышки не выше 61° С (в закрытом тигле) или 66° (в открытом). К таким жидкостям относятся индивидуальные вещества: ацетон, бензол, гексан, гептан, диметилфорамид, дифтордихлорметан, изопентан, изопропилбензол, ксилол, метиловый спирт, сероуглерод, стирол, уксусная кислота, хлорбензол, циклогексан, этилацетат, этилбензол, этиловый спирт, а также смеси и технические продукты бензин, дизельное топливо, керосин, уайтспирт, растворители.

3. ГОРЮЧИЕ ЖИДКОСТИ (ГЖ) - вещества, способные самостоятельно гореть после удаления источника зажигания и имеющие температуру вспышки выше 61° (в закрытом тигле) или 66° С (в открытом). К горючим жидкостям относятся следующие индивидуальные вещества: анилин, гексадекан, гексиловый спирт, глицерин, этиленгликоль, а также смеси и технические продукты, например, масла: трансформаторное, вазелиновое, касторовое.

4. ГОРЮЧИЕ ПЫЛИ (ГП) - твердые вещества, находящиеся в мелкодисперсном состоянии. Горючая пыль, находящаяся в воздухе (аэрозоль), способна образовывать с ним взрывчатые смеси. Осевшая на стенах, потолке, поверхностях оборудования пыль (аэрогель) пожароопасна.

Горючие пыли по степени взрыво- и пожароопасности делятся на четыре класса.

1-й класс - наиболее взрывоопасные - аэрозоли, имеющие нижний концентрационный предел воспламенения (взрываемости) (НКПВ) до 15 г/м 3 (сера, нафталин, канифоль, пыль мельничная, торфяная, эбонитовая).

2-й класс - взрывоопасные - аэрозоли имеющие величину НКПВ от 15 до 65 г/м 3 (алюминиевый порошок, лигнин, пыль мучная, сенная, сланцевая).

3-й класс - наиболее пожароопасные - аэрогели, имеющие величину НКПВ, большую 65 г/м 3 и температуру самовоспламенения до 250° С (табачная, элеваторная пыль).

4-й класс - пожароопасные - аэрогели, имеющие величину НКПВ большую 65 г/м 3 и температуру самовоспламенения, большую 250° С (древесные опилки, цинковая пыль).

Пыль – физическое состояние вещества, характеризующее степень его раздробленности. Производственная деятельность сопровождается образованием пыли. Пыль классифицируется по следующим признакам:

· По способу образования – аэрозоль и аэрогель. С точки зрения гигиенического воздействия наиболее опасна аэрозоль, а с точки зрения пожароопасности – аэрогель.

· По происхождению – органическая, неорганическая, смешанная

· По дисперсности – видимая, микроскопическая, ультрамикроскопическая

Пыль способна электризоваться, что приводит к возникновению пожаров. Также пылевыделения имеют другие отрицательные стороны – наносят экологический, экономический ущерб, ухудшает санитарное состояние производственной среды, ухудшает производственное освещение. Контроль количества пыли осуществляется методом определения ее массы и размера частиц.

8. Углекислотные огнетушители

Углекислотный огнетушитель – аппарат, огнегасящие свойства которого – углекислота – представляет химическое соединение углерода и кислорода. Это газ является инертным, он не поддерживает горение. Выпущенной из баллона жидкой, углекислота мгновенно превращается в газ, увеличиваясь в объеме в 400-500 раз. В твердое, снегообразное состояние углекислота переходит при выпуске ее под большим давлением. Образованию снежных хлопьев способствует быстрое испарение и охлаждение паров углекислоты. Часть углекислоты выходит в виде снега, часть - в виде тумана.

Огнегасительные свойства углекислоты заключаются в том, что она, являясь газом, уменьшает процентное содержание кислорода в очаге горения и изолирует его от притока воздуха. Углекислотный снег уменьшает температуру горящих предметов и окружающего воздуха. Углекислота применяется для тушения твердых и горючих веществ. Не являясь электропроводной, она также используется в тушении проводок. Но углекислота нестойкое вещество, легко уносится от пожара восходящими потоками воздуха, не обладает смачивающими свойства и является токсичным веществом. Поэтому ее нельзя использовать в людских помещениях в больших количествах.

Углекислотный огнетушитель представляет собой стальной баллон, в горловину которого ввернут вентиль из латуни, имеющий сифонную трубку. Вентиль огнетушителя – запорно-пусковое устройство. Чтобы привести в действие огнетушитель, необходимо вращать маховик до отказа, направляя раструб в очаг горения. Время непрерывного действия – 30 сек., тушить с расстояния 1 - 2 метра.

9. Огнегасящие свойства воды, пены, инертных газов

Вода охлаждает горящий предмет до температуры, ниже чем температура его самовоспламенения. Водяной пар, смешиваясь с горючими газами, понижает их концентрацию, препятствую полному сгоранию газа и понижает температуру. В процессе тушения пожара вода попадает на неохваченные огнем части, затрудняя их возгорание. Сильная струя воды сбивает горящие частицы, проникая внутрь раскаленной массы, охлаждает ее. Водой тушат большинство твердых горючих веществ. В виде распыленной струи водой тушат твердые тела, жидкости и газы. В некоторые вещества вода не проникает. Электроустановки и проводку водой тушить нельзя, т.к. она является проводником. Нельзя тушить водой такие химические вещества, как карбид кальция, калий и натрий, вступающие с водой в реакцию окисления.

Химическая пена также является средством пожаротушения, обладая огнегасящими свойствами. Принцип получения химической пены – реакция смешения кислотной и щелочной частей в заряде огнетушителя. Кислота и щелочь, вступая в реакцию, выделяют много углекислого газа. Пена очень легка, что позволяет ей удерживаться на поверхности горящих веществ, в том числе и жидкостей. Пена на поверхности горящего вещества не только снижает его температуру, но и препятствует доступу кислорода. При тушении жидкостей слой пены тормозит выделение паров и горение прекращается. Струю пены следует направлять не в центр горящей жидкости, а по поверхности, начиная с краев.

Инертный газ – химическое соединение, не поддерживающее горение. Одним из примеров инертного газа является углекислота, образованная при соединении углерода и кислорода.

10. Пожарная профилактика при проектировании и строительстве промышленных предприятий

По­жа­ры и взры­вы на объ­е­к­тах эко­но­ми­ки и в жи­лых до­мах пред­ста­в­ля­ют большую опа­с­ность для пер­со­на­ла этих объ­е­к­тов и на­се­ле­ния и мо­гут при­чи­нить ог­ром­ный ма­те­ри­аль­ный ущерб. Во­п­ро­сы обес­пе­че­ния по­жар­ной бе­з­о­па­с­но­сти про­из­вод­ст­вен­ных и жи­лых зда­ний и со­ору­же­ний име­ют боль­шое зна­че­ние и регла­мен­ти­ру­ют­ся спе­ци­аль­ны­ми го­су­дар­ст­вен­ны­ми ре­ше­ни­я­ми и по­ста­но­в­ле­ни­ями. По­жар­ная бе­з­о­па­с­ность мо­жет быть обес­пе­че­на ме­ра­ми по­жар­ной про­фи­ла­кти­ки и ак­тив­ной по­жар­ной за­щи­ты.

По­ня­тие по­жар­ной про­фи­ла­к­ти­ки вклю­ча­ет в се­бя ком­п­лекс ме­ро­при­я­тий, направлен­ных на пре­ду­п­ре­ж­де­ние воз­ни­к­но­ве­ния по­жа­ра и со­з­да­ние ус­ло­вий для пре­дот­вра­ще­ния ущер­ба от них. Под ак­тив­ной по­жар­ной за­щи­той по­ни­ма­ют­ся меры, обес­пе­чи­ва­ю­щие ус­пеш­ную борь­бу с воз­ни­ка­ю­щи­ми по­жа­ра­ми или взры­воо­па­с­ной си­ту­а­ци­ей.

Ана­лиз имев­ших ме­с­то на объ­е­к­тах эко­но­ми­ки круп­ных по­жа­рах по­ка­зал что при по­жа­ре на этих пред­при­яти­ях со­з­да­ёт­ся сло­ж­ная об­ста­нов­ка для по­жа­ро­ту­ше­ния, по­э­то­му тре­бу­ет­ся раз­ра­бот­ка ком­п­ле­к­са ме­ро­при­я­тий но про­ти­во­по­жар­ной защите. Этот ком­п­лекс вклю­ча­ет ме­ро­при­я­тия про­фи­ла­к­ти­че­с­ко­го ха­ра­к­те­ра и устрой­ст­во си­с­тем по­жа­ро­ту­ше­ния. По­жар­ная про­фи­ла­к­ти­ка яв­ля­ет­ся со­став­ной ча­стью тех­но­ло­ги­че­с­ких про­цес­сов про­из­вод­ст­ва, гра­до­стро­и­тель­ст­ва, пла­ни­ров­ки и за­строй­ки на­се­лен­ных пун­к­тов. Её ме­ро­при­я­тия учи­ты­ва­ют­ся при про­ек­ти­ро­ва­нии, стро­и­тель­ст­ве, ре­кон­ст­рук­ции, экс­плу­а­та­ции объ­е­к­тов, зда­ний, со­ору­же­ний, тран­с­порт­ных средств и в бы­ту. Ор­га­ни­за­ци­ей по­жар­ной про­фи­ла­к­ти­ки за­ни­ма­ют­ся ор­га­ны Го­су­дар­ст­вен­но­го по­жар­но­го над­зо­ра.

По­жар­ная про­фи­ла­к­ти­ка до­с­ти­га­ет­ся:

Раз­ра­бот­кой, вне­дре­ни­ем по­жар­ных норм и пра­вил на объ­е­к­тах и кон­т­ро­лем за их со­блю­де­ни­ем;

Ве­де­ни­ем кон­ст­ру­и­ро­ва­ния и про­ек­ти­ро­ва­ния со­з­да­ва­е­мых объ­е­к­тов с учё­том их по­жар­ной бе­з­о­па­с­но­сти;

Со­вер­шен­ст­во­ва­ни­ем и со­дер­жа­ни­ем в го­тов­но­сти про­ти­во­по­жар­ных средств;
- ре­гу­ляр­ным про­ве­де­ни­ем по­жар­но-тех­ни­че­с­ких об­сле­до­ва­ний объ­е­к­тов, жи­лых и об­ще­ст­вен­ных зда­ний;

Про­па­ган­дой по­жар­но-тех­ни­че­с­ких зна­ний сре­ди на­се­ле­ния.

Ме­ро­при­я­тия по по­жар­ной про­фи­ла­к­ти­ке раз­де­ля­ют­ся на ор­га­ни­за­ци­он­ные, техниче­с­кие, ре­жим­ные и экс­плу­а­та­ци­он­ные.

Ор­га­ни­за­ци­он­ные ме­ро­при­я­тия пре­д­у­сма­т­ри­ва­ют:

Пра­виль­ную экс­плу­а­та­цию обо­ру­до­ва­ния и тран­с­пор­та;

Пра­виль­ное со­дер­жа­ние зда­ний и со­ору­же­ний, тер­ри­то­рии;

Про­ти­во­по­жар­ный ин­ст­ру­к­таж ра­бо­чих и слу­жа­щих объ­е­к­та;

Ор­га­ни­за­цию до­б­ро­воль­ных по­жар­ных фор­ми­ро­ва­ний, по­жар­но-тех­ни­че­с­ких ко­мис­сий;

Из­да­ние при­ка­зов по во­п­ро­сам уси­ле­ния по­жар­ных фор­ми­ро­ва­ний и т.д.

К тех­ни­че­с­ким ме­ро­при­я­ти­ям от­но­сят­ся:

Со­блю­де­ние про­ти­во­по­жар­ных пра­вил и норм при про­ек­ти­ро­ва­нии зда­ний, ус­т­рой­ст­ве элек­т­ро­про­во­дов и обо­ру­до­ва­ния, ото­пле­ния, вен­ти­ля­ции, ос­ве­ще­ния;

Пра­виль­ное раз­ме­ще­ние обо­ру­до­ва­ния.

Ме­ро­при­я­тия ре­жим­но­го ха­ра­к­те­ра - это за­пре­ще­ние ку­ре­ния в не­ус­та­но­в­лен­ных ме­с­тах про­из­вод­ст­ва сва­ро­ч­ных и дру­гих ог­не­вых ра­бот в по­жа­ро­о­па­с­ных по­ме­ще­ни­ях.

Экс­плу­а­та­ци­он­ны­ми ме­ро­при­я­ти­я­ми яв­ля­ют­ся свое­вре­мен­ные про­фи­ла­к­ти­че­с­кие ос­мо­т­ры, ре­мон­ты и ис­пы­та­ния тех­но­ло­ги­че­с­ко­го обо­ру­до­ва­ния.

По­жар­ная про­фи­ла­к­ти­ка на про­мыш­лен­ных объ­е­к­тах ор­га­ни­зу­ет­ся на ос­но­ве общих тре­бо­ва­ний ко всем объ­е­к­там, а так­же в со­от­вет­ст­вии с ка­те­го­ри­ей пожарной опа­с­но­сти тех­но­ло­ги­че­с­ких про­цес­сов на ка­ж­дом из них.

По­вы­сить ог­не­стой­кость зда­ний и со­ору­же­ний мо­ж­но об­ли­цов­кой или ош­ту­ка­ту­ри­ва­ни­ем ме­тал­ли­че­с­ких кон­ст­рук­ций, за­щи­той де­ре­вян­ных кон­ст­рук­ций ош­ту­ка­ту­ри­ва­ни­ем (из­ве­ст­ко­во-це­мент­ное, ас­бо­це­мент­ное, гип­со­вое по­кры­тие или про­пи­ты­ва­ние их ан­ти­пи­ре­на­ми (фо­с­фор­но-ки­с­лый ам­мо­ний, сер­но­ки­с­лый ам­мо­ний) или ог­не­за­щит­ны­ми кра­с­ка­ми;

Ус­т­рой­ст­во про­ти­во­по­жар­ных раз­ры­вов ме­ж­ду зда­ни­я­ми. Ве­ли­чи­ны про­ти­во­по­жар­ных раз­ры­вов ме­ж­ду ос­нов­ны­ми и вспо­мо­га­тель­ны­ми зда­ни­я­ми оп­ре­де­ля­ют с уче­том их ог­не­стой­ко­сти они мо­гут на­хо­дить­ся в пре­де­лах от 9 до 18 ме­т­ров;

Зо­ни­ро­ва­ние тер­ри­то­рии. Это ме­ро­при­я­тие за­клю­ча­ет­ся в груп­пи­ро­ва­нии при ге­не­раль­ной пла­ни­ров­ке пред­при­ятий в от­дель­ные ком­п­ле­к­сы объ­е­к­тов, род­ст­вен­ных по функ­ци­о­наль­но­му на­зна­че­нию и при­зна­ку по­жар­ной опа­с­но­сти.

Для та­ких ком­п­ле­к­сов на про­мыш­лен­ной пло­щад­ке от­во­дят оп­ре­де­лен­ные уча­ст­ки. Со­ору­же­ния с по­вы­шен­ной по­жар­ной опа­с­но­стью рас­по­ла­га­ют с под­ве­т­рен­ной сто­ро­ны, скла­ды ЛВЖ и ре­зер­ву­а­ры с го­рю­чи­ми ве­ще­ст­ва­ми рас­по­ла­га­ют на гра­ни­цах объ­е­к­та или за их пре­де­ла­ми в бо­лее ни­з­ких ме­с­тах;

Ус­т­рой­ст­во вну­т­ри­за­вод­ских до­рог, ко­то­рые дол­ж­ны обес­пе­чи­вать бес­пре­пят­ст­вен­ный удоб­ный про­езд по­жар­ных ав­то­мо­би­лей к лю­бо­му зда­нию объ­е­к­та; вы­бор мест рас­по­ло­же­ния по­жар­ных де­по. Од­на из сто­рон пред­при­ятия дол­ж­на при­мы­кать к до­ро­ге об­ще­го поль­зо­ва­ния или со­об­щать­сяс ней про­ез­да­ми;

Ус­т­рой­ст­во вну­т­рен­не­го про­ти­во­по­жар­но­го во­до­про­во­да, сприн­к­лер­ных и дре­нер­ных ус­та­но­вок по­жа­ро­ту­ше­ния, по­жар­ной сиг­на­ли­за­ции;

За­ме­на сго­ра­е­мых пе­ре­кры­тий на не­сго­ра­е­мые;

Ус­та­нов­ка элек­т­ро­обо­ру­до­ва­ния в пы­ле­в­ла­го­не­про­ни­ца­е­мом ис­по­л­не­нии;

Си­с­те­ма­ти­за­ция хра­не­ния го­рю­чих ма­те­ри­а­лов, со­з­да­ние бу­фер­ных скла­дов, ис­к­лю­ча­ю­щих на­ко­п­ле­ние го­рю­чих ма­те­ри­а­лов на ра­бо­чих ме­с­тах;

От­де­ле­ние осо­бо опа­с­ных тех­но­ло­ги­че­с­ких уча­ст­ков про­из­вод­ст­ва про­ти­во­по­жар­ны­ми пре­гра­да­ми (про­ти­во­по­жар­ные сте­ны, пе­ре­кры­тия, лю­ки, две­ри, во­ро­та, там­бур-шлю­зы и ок­на).

Про­ти­во­по­жар­ные сте­ны вы­пол­ня­ют­ся из не­сго­ра­е­мых ма­те­ри­а­лов и дол­ж­ны иметь пре­дел ог­не­стой­ко­сти не ме­нее 2,5 час. и опи­рать­ся на фун­да­мен­ты Про­ти­во­по­жар­ные две­ри, ок­на и во­ро­та в про­ти­во­по­жар­ных сте­нах дол­ж­ны иметь пре­дел ог­не­стой­ко­сти не ме­нее 1 ча­са, а про­ти­во­по­жар­ные пе­ре­кры­тия - не ме­нее I ча­са. Пе­ре­кры­тия не дол­ж­ны иметь про­емов и от­вер­стий, че­рез ко­то­рые мо­гут про­ни­кать в по­ме­ще­ние про­ду­к­ты го­ре­ния при по­жа­ре;

В чи­с­то­те и ис­прав­но­сти под­дер­жи­ва­ют­ся пу­ти эва­ку­а­ции лю­дей при по­жа­ре. При воз­ни­к­но­ве­нии по­жа­ра лю­ди дол­ж­ны по­ки­нуть зда­ние в ми­ни­маль­ное вре­мя, ко­то­рое оп­ре­де­ля­ет­ся крат­чай­шим рас­сто­я­ни­ем от их ме­с­то на­хо­ж­де­ния в зда­нии до на­ру­ж­но­го вы­хо­да. Чи­с­ло эва­ку­а­ци­он­ных вы­хо­дов из зда­ний, по­ме­ще­ний и ка­ж­до­го эта­жа зда­ния оп­ре­де­ля­ет­ся рас­че­том, но дол­ж­но со­ста­в­лять не ме­нее двух. Вы­хо­ды дол­ж­ны рас­по­ла­гать­ся рас­сре­до­то­че­но.

Ус­та­но­в­ле­ние стро­го­го про­ти­во­по­жар­но­го ре­жи­ма на объ­е­к­те.

11. Пожарная опасность электроустановок, электрооборудования.

Классификация электрооборудования по пожаровзрывоопасности и пожарной опасности

1. В зависимости от степени пожаровзрывоопасности и пожарной опасности электрооборудование подразделяется на следующие виды:

1) электрооборудование без средств пожаровзрывозащиты;

2) пожарозащищенное электрооборудование (для пожароопасных зон);

3) взрывозащищенное электрооборудование (для взрывоопасных зон).

2. Под степенью пожаровзрывоопасности и пожарной опасности электрооборудования понимается опасность возникновения источника зажигания внутри электрооборудования и (или) опасность контакта источника зажигания с окружающей электрооборудование горючей средой. Электрооборудование без средств пожаровзрывозащиты по уровням пожарной защиты и взрывозащиты не классифицируется.

Классификация электрооборудования по пожаровзрывоопасности и пожарной опасности применяется для определения области его безопасного применения и соответствующей этой области маркировки электрооборудования, а также для определения требований пожарной безопасности при эксплуатации электрооборудования.

12. Горение Жидкостей

Предприятия, на которых перерабатываются или используются горючие жидкости, представляют собой большую пожарную опасность. Это объясняется тем, что горючие жидкости легко воспламеняются, интенсивнее горят, образуют взрывоопасные паровоздушные смеси и плохо поддаются тушению водой.

Горение жидкостей происходит только в паровой фазе. Скорость испарения и количество паров жидкости зависят от ее природы и температуры. Количество насыщенных паров над поверхностью жидкости зависит от ее температуры и атмосферного давления. В состоянии насыщения число испаряющихся молекул равно числу конденсирующихся, и концентрация пара остается постоянной. Горение паровоздушных смесей возможно только в определенном диапазоне концентраций, т.е. они характеризуются концентрационными пределами распространения пламени (НКПРП и ВКПРП).

Нижние (верхние) концентрационные пределы распространения пламени – минимальное (максимальное) содержание горючего вещества в однородной смеси с окислительной средой, при котором возможно распространение пламени по смеси на любое расстояние от источника зажигания.

Концентрационные пределы могут быть выражены через температуру (при атмосферном давлении). Значения температуры жидкости, при которых концентрация насыщенных паров в воздухе над жидкостью равна концентрационным пределам распространения пламени, называются температурными пределами распространения пламени (воспламенения) (нижним и верхним соответственно – НТПРП и ВТПРП).

Таким образом, процесс воспламенения и горения жидкостей можно представить следующим образом. Для воспламенения необходимо, чтобы жидкость была нагрета до определенной температуры (не меньше нижнего температурного предела распространения пламени). После воспламенения скорость испарения должна быть достаточной для поддержания постоянного горения. Эти особенности горения жидкостей характеризуются температурами вспышки и воспламенения.

В соответствии с ГОСТ 12.1.044 "Пожаровзрывоопасность веществ и материалов", температурой вспышки называется наименьшая температура конденсированного вещества, при которой в условиях специальных испытаний над его поверхностью образуются пары, способные вспыхивать в воздухе от источника зажигания; устойчивое горение при этом не возникает. Температура вспышки соответствует нижнему температурному пределу воспламенения.

Температуру вспышки используют для оценки воспламеняемости жидкости, а также при разработке мероприятий для обеспечения пожаро- и взрывобезопасности ведения технологических процессов.

Температурой воспламенения называется наименьшее значение температуры жидкости, при котором интенсивность испарения ее такова, что после зажигания внешним источником возникает самостоятельное пламенное горение.

В зависимости от численного значения температуры вспышки жидкости подразделяются на легковоспламеняющиеся (ЛВЖ) и горючие (ГЖ).

К легковоспламеняющимся жидкостям относятся жидкости с температурой вспышки не более 61оС в закрытом тигле или 66оС в открытом тигле.

Для ЛВЖ температура воспламенения обычно на 1-5оС выше температуры вспышки, а для горючих жидкостей эта разница может достигать 30-35?С.

В соответствии с ГОСТ 12.1.017-80, в зависимости от температуры вспышки ЛВЖ подразделяются на три разряда.

Особо опасные ЛВЖ – с температурой вспышки от -18оС и ниже в закрытом тигле или от -13оС и ниже в открытом тигле. К особо опасным ЛВЖ относятся ацетон, диэтиловый спирт, изопентан и др.

Постоянно опасные ЛВЖ – это горючие жидкости с темпе-ратурой вспышки от -18оС до +23оС в закрытом тигле или от -13оС до +27оС в открытом тигле. К ним относятся бензил, толуол, этило-вый спирт, этилацетат и др.

Опасные при повышенной температуре ЛВЖ – это горючие жидкости с температурой вспышки от 23оС до 61оС в закрытом тигле. К ним относятся хлорбензол, скипидар, уайт-спирит и др.

Температура вспышки жидкостей, принадлежащих к одному классу (жидкие углеводороды, спирты и др.), закономерно изменяется в гомологическом ряду, повышаясь с увеличением молекулярной массы, температуры кипения и плотности. Температуру вспышки определяют экспериментальным и расчетным путем.

Экспериментально температуру вспышки определяют в при-борах закрытого и открытого типа:

– в закрытом тигле на приборе Мартенса-Пенского по методике, изложенной в ГОСТ 12.1.044-89, – для нефтепродуктов;

– в открытом тигле на приборе ТВ ВНИИПО по методике, приведенной в ГОСТ 12.1.044-89, – для химических органических продуктов и на приборе Бренкена по методике, изложенной в том же ГОСТе, – для нефтепродуктов и масел.

13. Образования статического электричества и пожарная опасность искр от его разрядов

1. Электростатические заряды на производстве и их опасность.

В некоторых отраслях промышленного производства, связанных с обработкой диэлектрических материалов, нефтеперерабатывающей, текстильной, бумажной, и т.д. наблюдаются явления электризации тел – статическое электричество.

По определению ГОСТ 17.1.018-79 «Статическое электричество. Искробезопастность.» термин «статическое электричество» означает совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности и в объеме диэлектриков и полупроводников, изделий на изолированных (в том числе диспергированных (лат. dispergo – рассеивать; порошки, эмульсии) в диэлектрической среде) проводниках.

Электризация материалов часто препятствует нормальному ходу технологических процессов производства, а также создает дополнительную пожарную опасность вследствие искрообразования при разрядах при наличии в помещениях, резервуарах и ангарах горючих паро- и газо-воздушных смесей.

Этот же ГОСТ дает определение понятий электростатической искробезопастности (ЭСиБ) как состояние объекта, при котором исключена возможность взрыва и пожара от статического электричества. Электростатическая искробезопастность должна обеспечиваться путем устранения разрядов статического электричества, способных стать источником зажигания огнеопасных веществ (материалов, смесей, изделий, продукции и т.д.)

В ряде случаев статическая электризация тела человека и затем последующий разряд с человека на землю или заземленное производственное оборудование, а также электрический разряд с незаземленного оборудования через тело человека могут вызвать болевые и нервные ощущения и быть причиной непроизвольного резкого движения в результате которого человек может получить травму (падения, ушибы и т.д.).

Согласно гипотезе о статической электризации тел при соприкосновении двух разноразрядных веществ из-за неравновестности атомных и молекулярных сил на их поверхности происходит перераспределение электронов (в жидкостях и газах еще и ионов) с образованием двойного электрического слоя с противоположными знаками электрических зарядов. Таким образом, между соприкасающимися телами, особенно при их трении, возникает контактная разность потенциалов, значение которой зависит от ряда факторов – диэлектрических свойств материалов, значения их взаимного давления при соприкосновении, влажности и температуры поверхностей этих тел, климатических условий.

При последующем разделении этих тел каждое из них сохраняет свой электрический заряд, а с увеличением расстояния между ними (при уменьшении электрической емкости системы) за счет совершаемой работы по разделению зарядов, разность потенциалов возрастает и может достигнуть десятков и сотен киловольт.

При одинаковых значениях диэлектрической постоянной e соприкасающихся материалов электростатические заряды не возникают.

При статической электризации во время технологических процессов, сопровождающихся трением, размельчением твердых частиц, пересыпанием сыпучих материалов, переливанием диэлектрических жидкостей (нефтепродуктов и т.п.) на изолированных от земли металлических частях оборудования возникают, относительно земли, напряжения порядка десятков киловольт. Так, например, при движении резиновой ленты транспортера и в устройствах ременной передачи на ленте (ремне) и на роликах транспортера (шкивах) из-за некоторой пробуксовки возникают заряды противоположных знаков и большого значения, а разность и потенциалов достигает 45 кВ. Аналогично происходит электризация при сматывании (наматывании) тканей, бумаги, полиэтиленовой пленки и др.

При относительной влажности воздуха 85% и более разрядов статического электричества практически не возникает. В аэрозолях электрические заряды возникают от трения частиц вещества друг о дуга и о воздух во время движения.

Применяемое в электроустановках минеральное масло, в процессе его переливания, например, слив трансформаторного масла в бак, также подвергается электризации.

Электрические заряды, образующиеся на частях производственного оборудования и изделиях, могут взаимно нейтрализовываться вследствие некоторой электропроводности влажного воздуха, а также стекать в землю по поверхности оборудования, но в некоторых случаях, когда заряды велики и разность потенциалов также велика, то (при малой влажности воздуха) может произойти быстрый искровой разряд между наэлектризованными частями оборудования или на землю. Энергия такой искры может оказаться достаточной для воспламенения горючей ил взрывоопасной смеси. Например для многих паро- и газо-воздушных взрывоопасных смесей требуется небольшая энергия (0.1*10-3Втс). Практически при напряжении 3 кВ искровой разряд вызывает воспламенение паро- и газо-воздушных взрывоопасных смесей, а при 5 кВ – большей части горючих пылей и волокон.

2. Меры подавления статической электризации.

Устранение образования значительных статического электричества достигается при помощи следующих мер:

· Заземление металлических частей производственного оборудования;

· Увеличение поверхностной и объемной проводимости диэлектриков;

· Предотвращение накопления значительных статических зарядов путем установки в зоне электрозащиты специальных неитрализаторов.

Все проводящее оборудование и электропроводящие неметаллические предметы должны быть заземлены независимо от применения других мер защиты от статического электричества.

Неметаллическое оборудование считается заземленным, если сопротивление стекания тока на землю с любых точек его внешней и внутренней поверхностей не превышает 107 Ом при относительной влажности воздуха 60%. Такое сопротивление обеспечивает достаточно малое значение постоянной времени релаксации зарядов.

Заземление устройства для защиты от статического электричества, как правило, соединяется с защитными заземляющими устройствами электроустановок. Практически, считают достаточным сопротивление заземляющего устройства для защиты от статического электричества около 100 Ом. К заземляющему устройству присоединяют отдельными ответвлениями от магистрали аппараты и машины, являющиеся источниками статической электризации (смесители, вальцы, каландры, дробилки, сливно-наливные устройства нефтепродуктов и др.). Автоцистерны во время слива или налива горючих жидкостей заземляют переносным заземлением в виде гибкого многопроволочного провода.

Эффективным способом подавления электризации нефтепродуктов является введение в основной продукт специальных присадок, например, элеата хрома, элеата кобальта и др. Кроме того с целью уменьшения статической электризации при сливе нефтепродуктов и других горючих жидкостей необходимо избегать падения и разбрызгивания струи с высоты; сливной шланг (рукав) следует опускать до самого дна цистерны или другой емкости. Неметаллические наконечники этих сливных шлангов во избежание протекания на землю или незаземленные части оборудования необходимо заземлять гибким медным проводником.

Для повышения электропроводности резинотехнических изделий в их состав вводят такие антистатические вещества, как графит и сажа. Такие присадки вводят в резиновые шланги для налива и перекачки ЛВЖ, что в значительной мере снижает опасность воспламенения этих жидкостей при переливании их в передвижные емкости (автоцистерны, железнодорожные цистерны).

14. Источники воспламенения и методы борьбы с ними

Источники возгорания

Явления, обеспечивающие тепловую энергию, могут быть сгруппированы в четыре основные категории по их происхождению (Сакс, 1979 г.):

1. Тепловая энергия, генерируемая при химических реакциях (тепло окисления, тепло горения, тепло растворения, спонтанное нагревание, тепло разложения и т.п.).

2. Электротепловая энергия (тепло сопротивления, тепло индукции, тепло от дуговых разрядов, электрических искр, электростатических разрядов, тепло, образуемое ударом молнии, и т.п.).

3. Механическая тепловая энергия (тепло трения, искры от трения).

4. Тепло, образуемое ядерным распадом.

15. Самовозгорание веществ. Виды самовозгорания.

Самовозгорание присуще всем твердым горючим веществам и материалам. Сущность этого процесса заключается в том, что при продолжительном воздействии на материал тепла происходит аккумуляция (накопление) его в материале, и, при достижении температуры самонагревания, происходит тление или воспламенение последнего. При этом продолжительно; аккумуляции тепла в материале может продолжаться от нескольких дней до нескольких месяцев. Наиболее распространенными источниками тепла являются:

Тепло, выделяемое различными нагревательными приборами;

Тепло химических реакций;

Тепло микробиологических реакций.

Самовозгорание, происходящее в процессе самонагревания материалов под действием постороннего источника нагревания, называется тепловым самовозгоранием.

Тепло обыкновенного трубопровода горячей воды или пара может явиться тем источником тепла, которого достаточно для самовозгорания изделий из ткани, бумаги или древесины. Напомним, что температура горячей воды в системе отопления достигает +150°С, а пара - +130°С. Поэтому в правилах пожарной безопасности записано, что трубопроводы горячей воды или пара необходимо ограждать только экранами из негорючих материалов. В общественных зданиях допускаются декоративные решетки, но и в первом и во втором случаях расстояние от трубопроводов до экранов, а равно и до любого сгораемого материала (занавески, например) должно быть не менее 100 мм.

Часто мы становимся свидетелями тления и горения угля в кучах, торфа и хлопка, неоднократно отмечены случаи самовозгорания толи в рулонах, целофана и целлулоида, бумаги, а также материалов, содержащих нитроцеллюлозную основу, при хранении в больших кипах и пакетах. Температура самонагревания торфа и бурого угля составляет 50-60°С, хлопка - 120°С, бумаги - 100°С, поливинилхлоридного линолеума -80°С и т.д.

Как видите, для большинства самовозгорающихся веществ температура самонагревания не превышает 150°С.

Общее требование пожарной безопасности для случаев теплового самовозгорания формулируется довольно просто: безопасной температурой длительного нагрева вещества считается температура, не превышающая 90% температуры самонагревания.

Химическое самовозгорание связано со способностью веществ и материалов вступать в химическую реакцию с воздухом или другими окислителями при нормальных условиях с выделением теплоты, достаточной для их возгорания. Наиболее характерными примерами являются случаи самовозгорания промасленной ветоши или фосфора на воздухе, легковоспламеняющихся жидкостей при контакте с марганцовкой, древесных опилок с кислотами и пр. Поэтому мы говорим: "Окислителям - бой!" - и подразумеваем, что хранение веществ и материалов должно отвечать требованиям их совместимости.

Другой вид химических реакций веществ связан с взаимодействием воды или влаги. При этом также выделяется достаточная для самовозгорания веществ и материалов температура. Примерами могут служить такие вещества, как калий, натрий, карбид кальция, негашеная известь и др. Особенностью щелочноземельных металлов является их способность гореть и без доступа кислорода. Необходимый для реакции кислород они добывают сами, расщепляя под действием высокой температуры влагу воздуха на водород и кислород. Вот почему тушение водой таких веществ приводит к взрыву образующегося водорода.

И, наконец, микробиологическое самовозгорание связано с деятельностью мельчайших насекомых. Они в невиданных количествах размножаются в спрессованных материалах, поедают все органическое и там же умирают, вместе со своим разложением выделяя определенную температуру, которая накапливается внутри материала. Наиболее характерным примером является самовозгорание прошлогодних скирд сена.

16. Пожары, компоненты системы пожара

Пожар - неуправляемое, несанкционированное горение веществ, материалов и газовоздушных смесей вне специального очага, и приносящие значительный материальный ущерб, поражение людей на объектах и подвижном составе, которое подразделяется на наружные и внутренние, открытые и скрытые.

Причинами возникновения пожаров чаще всего являются: неосторожное обращение с огнем, несоблюдение правил эксплуатации производственного оборудования, самовозгорание веществ и материалов, разряды статического электричества, грозовые разряды, поджоги. В зависимости от места возникновения различают: пожары на транспортных средствах; степные и полевые пожары; подземные пожары в шахтах и рудниках; торфяные и лесные пожары; пожары в зданиях и сооружениях. Последние, в свою очередь, подразделяются на наружные (открытые), при которых хорошо просматриваются пламя и дым, и внутренние (закрытые), характеризующиеся скрытыми путями распространения пламени.

Пространство, охваченное пожарами, условно разделяют на 3 зоны - активного горения (очаг пожара), теплового воздействия и задымления. Внешними признаками зоны активного горения является наличие пламени, а также тлеющих или раскалённых материалов. Основной характеристикой разрушительного действия пожара является температура, развивающаяся при горении. Для жилых домов и общественных зданий температуры внутри помещения достигают 800-900 °С. Как правило, наиболее высокие температуры возникают при наружных пожарах и в среднем составляют для горючих газов 1200-1350 °C, для жидкостей 1100-1300 °C, для твёрдых веществ 1000-1250 °C. При горении термита, электрона, магния максимальная температура достигает 2000-3000 °C.

Пространство вокруг зоны горения, в котором температура в результате теплообмена достигает значений, вызывающих разрушающее воздействие на окружающие предметы и опасных для человека, называют зоной теплового воздействия. Принято считать, что в зону теплового воздействия, окружающую зону горения, входит территория, на которой температура смеси воздуха и газообразных продуктов сгорания не меньше 60-80 °С. Во время пожара происходят значительные перемещения воздуха и продуктов сгорания. Нагретые газообразные продукты сгорания устремляются вверх, вызывая приток более плотного холодного воздуха к зоне горения. При пожарах внутри зданий интенсивность газового обмена зависит от размеров и расположения проёмов в стенах и перекрытиях, высоты помещений, а также от количества и свойств горящих материалов. Направление движения нагретых продуктов обычно определяет и вероятные пути распространения пожара, так как мощные восходящие тепловые потоки могут переносить искры, горящие угли и головни на значительное расстояние, создавая новые очаги горения. Выделяющиеся при пожаре продукты сгорания (дым) образуют зону задымления. В состав дыма обычно входят азот, кислород, оксид углерода, углекислый газ, пары воды, а также пепел и др. вещества. Многие продукты полного и неполного сгорания, входящие в состав дыма, обладают повышенной токсичностью, особенно токсичны продукты, образующиеся при горении полимеров. В некоторых случаях продукты неполного сгорания, например, оксид углерода, могут образовывать с кислородом горючие и взрывоопасные смеси.

Для того, чтобы произошло возгорание необходимо наличие трёх условий:

  • Горючие вещества и материалы
  • Источник зажигания - открытый огонь, химическая реакция, электроток.
  • Наличие окислителя, например кислорода воздуха.

Для того, чтобы произошёл пожар необходимо выполнение ещё одного условия: наличие путей распространения пожара - горючих веществ, которые способствуют распространению огня.

Сущность горения заключается в следующем - нагревание источников зажигания горючего материала до начала его теплового разложения. В процессе теплового разложения образуется угарный газ, вода и большое количество тепла. Выделяется также углекислый газ и сажа, которая оседает на окружающем рельефе местности. Время от начала зажигания горючего материала до его воспламенения - называет временем воспламенения.


Похожая информация.


Рассмотрев вопрос возникновения горения в результате нагрева горючей смеси до их температуры самонагревания стоит обратить внимание на то, что в природе существует большое количество горючих веществ и материалов, температура самонагревания которых равна или ниже обычной температуры в помещениях. Так, алюминевая пудра при соприкосновении с воздухом способна окисляться и при этом самонагреваться до возникновения пламенного горения даже при температуре окружающего воздуха 10 0 С.

Такой процесс возгорания веществ и материалов получил название самовозгорание.

Согласно стандартам ГОСТ и СЭВ самовозгорание - это:

1) резкое увеличение скорости экзотермических процессов в веществе, приводящее к возникновению очага горения;

2) возгорание в результате самоинициируемых экзотермических процессов.

Самовозгорание как начальная стадия горения принципиально не отличается от самовоспламенения (см. рис. 2.4). Склонность веществ и материалов к самовозгоранию можно охарактеризовать как функцию теплоты сгорания соединения, скорости реакции окисления, теплопроводности, теплоёмкости, влажности, наличия примесей, объёмной плотности, удельной поверхности, теплопотерь и т. д. Самовозгоранием считается, если процесс самонагревания веществ и материалов происходит в интервале температур от 273 К до 373 К, т. е. при более низких температурах, чем при самовоспламенении.

Рис. 2.4. Схема возникновения горения

Температурой самонагревания называется самую низкую температуру вещества, при которой возникает его самонагревание, заканчивающееся самовоспламенением. Самовозгорающиеся вещества делят на три группы: масла, жиры и другие продукты растительного происхождения; самовозгорающиеся химические вещества; ископаемые горючие материалы.

Причиной самонагревания, приводящей к воспламенению, может быть ряд факторов: микробиологический процесс, адсорбция , полимиризация, теплота химических реакций. Условно самовозгорание классифицируют по начальным причинам самонагревания и различают: тепловое самовозгорание, микробиологическое и химическое самовозгорания (см. рис. 2.5).

Рассмотрим более подробно каждый вид самовозгорания .

Тепловое самовозгорание. Тепловым называется самовозгорание, вызванное самонагреванием, возникшим под воздействием внешнего нагрева вещества, материала, смеси выше температуры самонагревания. Тепловое самовозгорание возникает при нагревании вещества до температуры, обеспечивающей его термическое разложение идальнейшее самоускоряющееся самонагревание за счет тепла экзотермических реакций в объеме горючего.

При этом большую роль играют реакции окисления продуктов термического разло-жения. Сам процесс протекает в форме тления в глубине мате-риала, которое затем переходит в пламенное горение на поверх-ности. К тепловому самовозгоранию имеют склонность многие вещества и материалы, в частности масла и жиры, каменные угли и некоторые химические вещества. Самонагревание масел и жиров растительного, животного и минерального происхождения возникает в результате окислительных процессов под действием кислорода воздуха при развитой поверхности контакта с ними.


Минеральные масла - машинное, трансформаторное, соляровое и другие, которые получают при переработке нефти. Они представляют собой главным образом смесь предельных углеводородов и окисляются на воздухе только при высоких температурах. Отработанные минеральные масла, подвергавшиеся нагреву до высокой температуры, могут содержать непредельные соединения, которые способны к саморазогреву, т. е. могут самовозгораться.

Рис. 2.5. Схема развития процесса самовозгорания твердых веществ и материалов. Импульсы самонагревания (самовозгорания): 1 - тепловой, 2 - химический, 3 - микробиологический.

Растительные масла (хлопковое, льняное, подсолнечное и др.) и животные (сливочное, рыбий жир) по своему составу отличаются от минеральных. Они представляют собой смесь глицеридов жирных кислот: пальмитиновой С 15 Н 31 СООН, стеариновой C 17 Н 35 СООН, олеиновой С 17 Н 33 СООН, линолевой С 17 Н 31 СООН, линоленовой С 17 Н 29 СООН и др. Пальмитиновая и стеариновая кислоты являются предельными, олеиновая, линолевая и линоленовая - непредельными.

Глицериды предельных кислот, а следовательно, масла и жиры, содержащие их в большом количестве, окисляются при температурах свыше 150 0 С, что означает следующее: они не способны самовозгораться (см. табл. 2.3). Масла, содержащие большое количество глицеридов непредельных кислот, начинают окисляться при температурах значительно ниже 100 0 С, следовательно, они способны самовозгораться.

Таблица 2.3.

Состав жиров и масел

Масла и жиры самовозгораются только при определённых условиях:

а) при наличии в составе масел и жиров значительного количества глицеридов непредельных кислот;

б) при наличии большой поверхности их окисления и малой теплоотдачи;

в) если жирами и маслами пропитаны какие-либо волокнистые горючие материалы;

г) промасленные материалы имеют определённую уплотнённость.

Различная способность растительных масел и животных жиров к самовозгоранию объясняется тем, что они содержат глицериды различного состава, строения и не в одинаковом количестве.

Глицериды непредельных кислот способны окисляться на воздухе при обычной температуре помещений за счёт наличия в их молекулах двойных связей:

Пероксиды легко разлагаются с образованием атомарного кислорода , который очень реакционноспособен:

Атомарный кислород взаимодействует даже с трудноокисляющимися компонентами масел.

Одновременно с окислением протекает и реакция полимеризации непредельных соединений:

Процесс идёт при низкой температуре с выделением тепла. Чем больше глицерид имеет двойных связей, тем больше он присоединяет молекул кислорода, тем больше выделяется тепла в процессе реакции, тем больше его способность к самовозгоранию.

О количестве глицеридов непредельных кислот в масле и жире судят по йодному числу масла, т. е. по количеству йода, поглощённому 100 г масла. Чем выше йодное число, тем большая способность этого жира или масла к самовозгоранию (см. табл. 2.4).

Самое большое йодное число имеет льняное масло. Волокнистые материалы, пропитанные льняным маслом, при всех прочих одинаковых условиях самовозгораются быстрее, чем материалы, пропитанные другими маслами. Олифы, приготовленные на основе растительных масел, имеют меньшее йодное число, чем основа, но способность к самовозгоранию у них выше.

Это объясняется тем, что в олифу добавляется сиккатив, ускоряющий её высыхание, т. е. окисление и полимеризацию. Полунатуральные олифы, представляющие собой смеси окисленного льняного или других растительных масел с растворителями, имеют небольшие йодные числа и мало способны к самовозгоранию. Синтетические олифы совершенно не способны самовозгораться.

Таблица 2.4.

Иодные числа жиров и масел

Жиры рыб и морских животных имеют высокое йодное число, но обладают незначительной способностью к самовозгоранию. Это объясняется тем, что в их составе присутствуют продукты, замедляющие процесс окисления.

Способность промасленных материалов к самовозгоранию увеличивается с присутствием в них катализаторов, ускоряющих процесс окисления и полимеризацию масел. Повышение температуры окружающей среды также способствует ускорению этих процессов. Катализаторами для самовозгорания масел являются соли различных металлов: марганца, свинца, кобальта. Наиболее низкая температура, при которой на практике наблюдали самовозгорание масел и жиров, составляла 10-15 0 С.

Индукционный период самовозгорания промасленных материалов может составлять от нескольких часов до нескольких дней. Это зависит от объёма промасленного материала, степени его уплотнения, вида масла или жира и их количества, температуры воздуха и других факторов.

Ископаемые угли (каменный, бурый), которые хранятся в кучах или штабелях, способны самовозгораться при низких температурах. Основными причинами самовозгорания является способность углей окисляться и адсорбировать пары и газы при низких температурах. Процесс окисления в угле при низких температурах идёт достаточно медленно и тепла выделяется мало. Но в больших скоплениях угля теплоотдача затруднена, и самовозгорание угля всё же происходит. Самонагревание в штабеле угля первоначально происходит во всём объёме, исключая только поверхностный слой толщиной 0,3-0,5 м, но по мере повышения температуры оно приобретает очаговый характер.

Рост температуры в очаге самовозгорания до 60 0 С идёт медленно и может прекратиться при проветривании штабеля. Начиная с 60 0 С, скорость самонагревания резко увеличивается, такая температура угля называется критической . Склонность углей к самовозгоранию в штабелях различна, она зависит от количества выхода из них летучих веществ, от степени измельчения, присутствия влаги и пирита. Согласно нормам хранения все ископаемые угли по их склонности к самовозгоранию делятся на две категории: А - опасные, Б - устойчивые.

К категории А относят бурые и каменные угли, за иск-лючением марки Т, а также смеси разных категорий. Наиболее опасны в отношении самовозгорания уг-ли марок ОС (кузнецкие), Ж (ткварчельские), Г (ткибульские), Д (печерские, кузнецкие и донецкие), Б (райчихинские, украинские, ленировские, ангренские и др.). Эти угли нельзя хранить долго. К категории Б относят антрацит и каменные угли мар-ки Т. Устойчивы при длительном хранении все антрациты и угольные брикеты, угли марок Т (донецкие, кузнецкие), Ж (печерские и сучанские), Г (сучанские), Д (чернеховские).

Для предотвращения самовозгорания углей при хранении нормами установлено:

1) ограничение высоты штабелей угля;

2) уплотнение угля в штабеле с целью ограничения доступа воздуха во внутренний объём штабеля.

Выполнение этих мероприятий сводит к минимуму скорость процессов окисления и адсорбции, рост температуры в штабеле, препятствует проникновению в штабель атмосферных осадков и естественно снижает возможность самовозгорания.

Также к тепловому самовозгоранию имеют склонность многие химические вещества . Сульфиды железа FeS, FeS 2 , Fe 2 S 3 способны самовозго-раться, поскольку могут реагировать с кислородом воздуха при обычной температуре с выделением большого количест-ва тепла:

FeS 2 + О 2 → FeS + SO 2 + 222,3 кДж.

Отмечены случаи самовозгорания пирита или серного колчедана (FeS 2) на складах сернокислотных заводов, а также в рудниках. Самовозгоранию пирита способствует влага.

Предпо-лагается, что реакция в этом случае протекает по сле-дующему уравнению:

2FeS 2 + 7,5О 2 + Н 2 О → Fe 2 (SO 4) 3 + K 2 SO 4 + 2771 кДж.

При образовании железного купороса объем увеличива-ется и происходит растрескивание пирита и его измель-чение, что благоприятствует процессу самовозгорания.

Сульфиды FeS и Fe 2 S 3 образуются в емкостях для хранения нефтепродуктов, горючих газов и в аппарату-ре различных производств, где имеются примеси серо-водорода. В зависимости от температуры образование сульфидов железа протекает различно. Если температу-ра выше температуры диссоциации сероводорода, т. е. выше 310 0 С, сульфиды железа образуются при взаимо-действии железа с элементарной серой, получившейся в результате разложения сероводорода или других серни-стых соединений.

Элементарная сера может также по-лучиться в результате окисления сероводорода , и тогда образование сернистого железа происходит по следую-щим реакциям:

2H 2 S + О 2 →2Н 2 О + 2S,

При температурах ниже 310 0 С сульфиды железа в производственной аппаратуре образуются в результате воздей-ствия сероводорода не на железо, а на продукты его коррозии:

2Fe(OH) 3 + 3H 2 S → Fe 2 S 2 + 6Н 2 О.

Все пожары в производственной аппаратуре, возник-шие в результате самовозгорания сульфидов железа, происходили после освобождения аппаратуры от храни-мого или обрабатываемого в ней продукта.

Например, на нефтеперегонном заводе, перерабатывающем сернистую нефть, была поставлена на ремонт бензиновая ректификационная колонна. При вскрытии люка на стенках колонны и тарелках был обнаружен слой сульфида железа. Быстрая подача пара в колонну позволила предотвратить окисление и самовозгорание сульфида же-леза. Как видно, сульфид железа в колонне образовался уже давно, но из-за отсутствия воздуха окисление не протекало.

Самовозгорание сульфидов железа в производствен-ной аппаратуре предотвращают следующими методами: очисткой от сероводорода обрабатываемого или хранимого продукта, антикоррозийным покрытием внутренней поверхности аппаратуры, продуванием аппаратуры па-ром или продуктами сгорания для удаления горючих паров и газов, заполнением аппаратуры водой и медленным спуском ее, что ведет к окислению сульфида без ус-корения реакции.

Фосфор белый (желтый), фосфористый водород (фосфин), водородистый кремний (силан), цинковая пыль, алюминиевая пудра, карбиды щелочных металлов, суль-фиды металлов - рубидия и цезия, арсины, стибины, фосфины, сульфоуголь и другие вещества также способны окисляться на воздухе с выделением тепла, за счет ко-торого реакция ускоряется до горения. Некоторые из перечисленных веществ способны самовозгораться очень быстро после соприкосновения с воздухом, другие же - через длительный промежуток времени.

Например, фосфор белый (желтый) интенсивно окисляется при температуре помещений, поэтому быстро самонагревает-ся и загорается с образованием белого дыма:

4Р + 5О 2 → 2Р 2 О 5 + 3100,6 кДж.

При смачивании раствором фосфора в сероуглероде горючих веществ происходит испарение сероуглерода ; остающийся на поверхности тонкий слой фосфора быстро окисляется и самовозгорается. В зависимости от кон-центрации раствора смоченные им вещества самовозго-раются через различные промежутки времени.

Хранить и резать фосфор следует под водой, так как на воздухе он может воспламениться от теплоты трения, причем белый фосфор очень ядовит.

Некоторые металлы, металлические порошки, пудры способны самовозгораться на воздухе за счет тепла, вы-деляющегося при реакции окисления. Из металлов в компактном состоянии этой способностью обладают ру-бидий и цезий, из металлических пудр - алюминиевая пудра и др. Для предотвращения самовозгорания алю-миниевой пудры ее приготовляют в среде инертного газа и затем перетирают с жирами, пленка которых предох-раняет пудры от окисления. Известны случаи, когда алюминиевая пудра под действием растворителя или на-гревания обезжиривалась и самовозгоралась.

Карбиды щелочных металлов К 2 С 2 , Na 2 C 2 , Li 2 С 2 са-мовозгораются не только на воздухе, но даже и в ат-мосфере СО 2 и SO 2 .

К самовозгоранию на воздухе способны также диэтиловый эфир и скипидар. Диэтиловый эфир при длитель-ном соприкосновении с воздухом на свету способен об-разовывать перекись диэтила (С 2 Н 5)О 2 , которая при ударе или нагревании до 75 0 С разлагается со взрывом и воспламеняет эфир. Скипидар также может самовозго-раться, если им смочены волокнистые материалы. При-чина самовозгорания - способность скипидара окислять-ся на воздухе при низких температурах. Известен случай самовозгорания ваты, смоченной скипидаром. Такой ва-той смывали масляную краску с декорации. Ночью вата, собранная в одном месте, самовозгорелась. Известны также случаи самовозгорания мха, смоченного скипида-ром.

Сульфоуголь, находясь в бумажных мешках, уложен-ных в штабель, способен самовозгораться. Были случаи его самовозгорания в первые 2-3 дня после укладки мешков в штабель.

Микробиологическое самовозгорание. Микробиологическим называется самовозгорание, возникающее в результате самонагревания под воздействием жизнедеятельности микроорганизмов в массе вещества, материала, смеси. К таким веществам относятся торф (в основном, фрезерный), растительные материалы: сено, клевер, силосная масса, солод, зерновые культуры, хлопок, скопление древесных опилок и подобные им материалы.

Особенно подвержены самовозгоранию недосушенные материалы. Влага и тепло способствуют размножению микроорганизмов в массе этих материалов уже при 10-18 0 С. Вследствие плохой теплопроводности растительных материалов выделяющееся при гниении тепло идёт на разогрев гниющего материала, температура его повышается и может достичь 70 0 С. Микроорганизмы при такой температуре погибают, однако повышение температуры в материале не прекращается, так как некоторые органические соединения в это время уже обугливаются.

Образующийся при этом пористый уголь имеет свойство адсорбировать пары и газы, что сопровождается выделением тепла. В случае малой теплоотдачи уголь нагревается до начала процесса окисления и температура растительных материалов повышается, достигая 200 0 С. Это приводит к разложению клетчатки и дальнейшему обугливанию массы. Процесс окисления пористого угля интенсифицируется, в результате чего температура растёт и возникает горение.

При увлажнении растительного сырья как при нормальной, так и повышенной температурах выделяются газы, в том числе и горючие. Так, при промачивании растительного сырья водяным паром или водой, при тушении горящего продукта начинается выделение СО, СН 4 , Н 2 в количествах, значительно превышающих НКПРП для каждого из этих газов. Поэтому использование для подавления очагов горения растительного сырья в силосах и бункерах только воды или пара может привести к взрыву хранилищ.

Химическое самовозгорание. Химическим называется самовозгорание, возникающее в результате химического взаимодействия веществ. Химическое самовозгорание возникает в месте контакта взаимодействующих веществ, реагирующих с выделением тепла. В этом случае самовозгорание наблюдается обычно на поверхно-сти материала, а затем распространяется вглубь. Процесс самонагревания начинается при температурах ниже 50 0 С. Некоторые химические соединения склонны к самонагреванию в результате контакта с кислородом воздуха и другими окислителями, друг с другом и водой. Причиной самонагревания является их высокая реакционная способность.

Вещества, самовозгорающиеся при контакте с окис-лителями . Многие вещества, в основном органические, при смешении или соприкосновении с окислителями спо-собны самовозгораться. К окислителям, вызывающим самовозгорание таких веществ, относятся: кислород воздуха, сжатый кисло-род, галогены , азотная кислота , перекись натрия и ба-рия, перманганат калия, хромовый ангидрид, двуокись свинца, селитры, хлораты, перхлораты, хлорная известь и др. Некоторые из смесей окислителей с горючими ве-ществами способны самовозгораться только при воздей-ствии на них серной или азотной кислоты или при ударе и слабом нагревании.

Самовозгорание на воздухе. Некоторые химические соединения склонны к самонагреванию в результате контакта с кислородом воздуха. Причиной самовозгорания служит их высокая реакционная способность в контакте с другими соединениями. Поскольку этот процесс происходит большей частью при комнатных температурах, его также относят к самовозгоранию. На самом деле, заметный процесс взаимодействия компонентов наблюдается при значительно более высоких температурах, и поэтому в качестве температурного показателя пожарной опасности таких веществ приводят их температуру самовоспламенения. Например, алюминиевая пудра самовозгорается на воздухе. Однако реакция образования окиси алюминия протекает при 913 К.

Сжатый кислород вызывает самовозгорание веществ (минерального масла), которые не самовозгораются в кислороде при нормальном давлении.

Хлор, бром, фтор и йод чрезвычайно активно соеди-няются с некоторыми горючими веществами, причем реакция сопровождается выделением большого количества тепла, что приводит к самовозгоранию веществ. Так, ацетилен , водород , метан и этилен в смеси с хлором самовозгораются на свету или от света горящего магния.

Если указанные газы присутствуют в момент выделения хлора из любого вещества, самовозгорание их происходит даже в темноте:

С 2 Н 2 + С1 2 → 2НС1 +2С,

СН 4 + 2С1 2 → 4НС1 + С и т. д.

Нельзя хранить галогены вместе с легко воспламе-няющимися жидкостями. Известно, что скипидар, рас-пределенный в каком-либо пористом веществе (в бумаге, ткани, вате), самовозгорается в хлоре.

Пары диэтилового эфира могут также самовозгораться в атмосфере хлора:

С 2 Н 5 ОС 2 Н 5 + 4С1 2 → Н 2 О + 8НС1 + 4С.

Красный фосфор моментально самовозгорается при соприкосновении с хлором или бромом.

Не только галогены в свободном состоянии, но и их соединения энергично вступают в реакцию с некоторыми металлами. Так, взаимодействие четыреххлористого эта-на C 2 H 2 CI 4 с металлическим калием происходит со взры-вом:

С 2 Н 2 С1 4 + 2К → 2КС1 + 2НС1 + 2С.

Смесь четыреххлористого углерода СС1 4 или четырех-бромистого углерода со щелочными металлами при на-гревании до 70 0 С взрывается.

Азотная кислота, разлагаясь, выделяет кислород, по-этому является сильным окислителем, способным выз-вать самовозгорание ряда веществ.

4HNO 8 → 4NO 2 + О 2 + 2Н 2 О.

При соприкосновении с азотной кислотой самовозго-раются скипидар и этиловый спирт.

Растительные материалы (солома, лен, хлопок, древесные опилки и стружки) самовозгораются, если на них попадет концентрированная азотная кислота.

При соприкосновении с перекисью натрия способны самовозгораться следующие горючие и легковоспламе-няющиеся жидкости: метиловый, этиловый, пропиловый, бутиловый, изоамиловый и бензиловый спирты, этиленгликоль, диэтиловый эфир, анилин, скипидар и уксусная кислота. Некоторые жидкости самовозгорались с перекисью натрия после введения в них небольшого количества воды. Так ведут себя уксусноэтиловый эфир (этилацетат), ацетон , глицерин и изобутиловый спирт.

Началом реакции служит взаимодействие воды с пере-кисью натрия и выделение при этом атомарного кисло-рода и тепла:

Na 2 O 2 + Н 2 О → 2NaOH + О.

Атомарный кислород в момент выделения окисляет горючую жидкость, и она самовозгорается. Порошок алюминия, опилки, уголь, сера и другие вещества в смеси с перекисью натрия моментально самовозгораются от попадания на них капли воды.

Сильным окислителем является перманганат калия КМnО 4 . Его смеси с твердыми горючими веществами крайне опасны. Они самовозгораются от действия кон-центрированных серной и азотной кислот, а также от удара и трения. Глицерин С 3 Н 5 (ОН) 3 и этиленгликоль С 2 Н 4 (ОН) 2 самовозгораются в смеси с перманганатом калия через несколько секунд после смешения.

Сильным окислителем является также хромовый ангидрид. При попадании на хромовый ангидрид самовозгораются следующие жидкости: метиловый, этиловый, бутиловый, изобутиловый и изоамиловый спирты; уксус-ный, масляный, бензойный, пропионовый альдегиды и паральдегид; диэтиловый эфир, этилацетат , амилацетат, метилдиоксан, диметилдиоксан; уксусная, пеларгоновая, нитрилакриловая кислоты; ацетон.

Смеси селитр, хлоратов, перхлоратов способны само-возгораться при действии на них серной, а иногда азот-ной кислоты. Причиной самовозгорания является выде-ление кислорода под действием кислот.

При действии серной кислоты на бертолетову соль происходит следу-ющая реакция :

H 2 SO 4 + 2КСlO 3 → K 2 SO 4 + 2НСlO 3 .

Хлорноватая кислота малоустойчива и при образова-нии распадается с выделением кислорода:

2НСlO 3 → 2НС1 + 3О 2 .

Карбиды щелочных металлов К 2 С 2, Na 2 C 2 , Li 2 C 2 самовозгораются не только на воздухе, но даже и в атмосфере СО 2, SO 2 .

Например, карбид кальция Са 2 С при контакте с водой выделяет горючий газ ацетилен С 2 Н 2, который в смеси с воздухом возгорается в результате того, что нагревается теплом, выделившимся в ходе реакции, Т св ацетилена равна 603 К.

Вещества, самовозгорающиеся при контакте с водой. К этой группе материалов относятся калий, натрий, ру-бидий, цезий, карбид кальция и карбиды щелочных ме-таллов, гидриды щелочных и щелочноземельных метал-лов, фосфиды кальция и натрия, силаны, негашеная из-весть, гидросульфид натрия и др.

Щелочные металлы - калий, натрий, рубидий и це-зий - взаимодействуют с водой с выделением водорода и значительного количества тепла:

2Na + 2Н 2 О → 2NaOH + Н 2 ,

2К + 2Н 2 О → 2КОН + Н 2 .

Выделяющийся водород самовоспламеняется и горит сов-местно с металлом только в том случае, если кусок ме-талла по объему больше горошины. Взаимодействие ука-занных металлов с водой иногда сопровождается взры-вом с разбрызгиванием расплавленного металла. Так же ведут себя гидриды щелочных и щелочноземельных металлов (КН, NaH, CaH 2) при взаимодействии с не-большим количеством воды:

NaH + Н 2 О → NaOH + Н 2 .

При взаимодействии карбида кальция с небольшим количеством воды выделяется столько тепла, что в при-сутствии воздуха образующийся ацетилен самовозгора-ется. При большом количестве воды этого не происходит. Карбиды щелочных металлов (например, Na 2 C 2 , K 2 C 2) при соприкосновении с водой взрываются, причем метал-лы сгорают, а углерод выделяется в свободном состоя-нии:

2Na 2 C 2 + 2Н 2 О + О 2 → 4NaOH + 4С.

Фосфид кальция Са 3 Р 2 при взаимодействии с водой об-разует фосфористый водород (фосфин):

Са 3 Р 2 + 6Н 2 О → 3Са(ОН) 2 + 2РН 3 .

Фосфин РН 3 является горючим газом, но самовозгорать-ся не способен. Совместно с РН 3 выделяется некоторое количество жидкого Р 2 Н 4 , который способен самовозго-раться на воздухе и может быть причиной воспламене-ния РН 3 .

Силаны, т. е. соединения кремния с различными ме-таллами, например Mg 2 Si, Fe 2 Si, при действии воды вы-деляют водородистый кремний, самовозгорающийся на воздухе:

Mg a Si + 4Н 2 О → 2Mg(OH) 2 + SiH 4 ,

SiH 4 + 2О 2 → SiO 2 + 2Н 2 О.

Перекись бария и перекись натрия хотя и взаимо-действуют с водой, но горючих газов при данной реакции не обра-зуется. Горение может возникнуть, если перекиси сме-шаны или соприкасаются с горючими веществами.

Оксид кальция (негашеная известь), реагируя с не-большим количеством воды, разогревается до свечения и может поджечь соприкасающиеся с ней горючие ма-териалы.

Гидросульфит натрия, являясь влажным, энергично окисляется с выделением тепла. В результате этого происходит самовозгорание серы, образующейся при распа-де гидросульфита.

Таким образом, самовозгорание и самонагревание горючих смесей, веществ и материалов, которые протекают при низких температурах, имеют ту же природу, что и самовоспламенение, но вследствие своей большей распространенности служат причиной пожаров гораздо чаще, чем самовоспламенение.

Вопросы для самоконтроля

1. В чем особенности тепловой теории горения?

2. В чем особенности цепной теории горения?

3. От чего зависит скорость выделения тепла при горении?

4. Каким уравнением описывается скорость горения?

5. От каких параметров зависит количество отводимого тепла?

6. При каком условии возможно самовоспламенение?

7. Что называется температурой самовоспламенения?

8. Что представляет собой индукционный период самовоспламенения?

9. От каких факторов зависит температура самовоспламенения?

10. Что называется воспламенением?

11. Что может служить источником воспламенения?

12. В чем отличие тления и пламенного горения?

13. Что называется температурой самовозгорания?

14. Каковы особенности теплового самовозгорания?

15. Каковы особенности химического самовозгорания?

16. Как происходит самовозгорание жиров и масел?

17. Что характеризует йодное число?

18. Каковы особенности микробиологического самовозгорания?

19. Что необходимо для предотвращения самовозгорания угля?

20. В чем сходство и отличие развитие процесса воспламенения и процесса самовоспламенения?