Понятие векторного пространства примеры векторных пространств. Линейное (векторное) пространство. Отрывок, характеризующий Векторное пространство

ВЕКТОРНОЕ ПРОСТРАНСТВО, линейное пространство, над полем K, - аддитивно записанная абелева группа Е, в которой определено умножение элементов на скаляры, т. е. отображение

К × Е → Е: (λ, х) → λх,

удовлетворяющее следующим аксиомам (х, y ∈ Е, λ, μ, 1 ∈ K):

1) λ(х + у) = λх + λу,

2) (λ + μ)x = λx + μx,

3) (λμ)x = λ(μx),

4) 1 ⋅ x = х.

Из аксиом 1)-4) вытекают следующие важные свойства векторного пространства (0 ∈ Е):

5) λ ⋅ 0 = 0,

6) 0 ⋅ х = 0,

Элементы В. п. наз. точками В. п., или векторами, а элементы поля K - скалярами.

Наибольшее применение в математике и приложениях имеют В. п. над полем ℂ комплексных чисел или над полем ℝ действительных чисел; они наз. соответственно комплексными В. п. или действительными В. п.

Аксиомы В. п. выявляют нек-рые алгебраич. свойства многих классов функций, часто встречающихся в анализе. Из примеров В. п. самыми фундаментальными и наиболее ранними являются n-мерные евклидовы пространства. Почти столь же важными примерами являются многие функциональные пространства: пространство непрерывных функций, пространство измеримых функций, пространство суммируемых функций, пространство аналитич. функций, пространство функций ограниченной вариации.

Понятие В. п. есть частный случай понятия модуля над кольцом, а именно, В. п. есть унитарный модуль над полем. Унитарный модуль над некоммутативным телом также наз. векторным пространством над телом; теория таких В. п. во многом сложнее теории В. п. над полем.

Одной из важных задач, связанных с В. п., является изучение геометрии В. п., т. е. изучение прямых в В. п., плоских и выпуклых множеств в В. п., подпространств В. п. и базисов в В. п.

Векторным подпространством, или просто подпространством, В. п. Е над полем К наз. подмножество F ⊂ E, замкнутое относительно действий сложения и умножения на скаляр. Подпространство, рассматриваемое отдельно от вмещающего его пространства, есть В. п. над тем же полем.

Прямой линией, проходящей через две точки х и y В. п. Е, наз. множество элементов z ∈ E вида z = λx + (1 - λ)y, λ ∈ K. Множество G ∈ E наз. плоским множеством, если вместе с любыми двумя точками оно содержит прямую, проходящую через эти точки. Каждое плоское множество получается из нек-рого подпространства с помощью сдвига (параллельного переноса): G = x + F; это означает, что каждый элемент z ∈ G представим единственным образом в виде z = x + y, y ∈ F, причем это равенство осуществляет взаимно однозначное соответствие между F и G.

Совокупность всех сдвигов F x = x + F данного подпространства F образует В. п. над K, наз. фактор-пространством E/F, если определить операции следующим образом:

F x F y = F x+y ; λF x = F λx , λ ∈ К.

Пусть М = {х α } α∈A - произвольное множество векторов из Е; линейной комбинацией векторов х α ∈ Е наз. вектор х, определенный формулой

х = ∑ α λ α x α , λ α ∈ K,

в к-рой лишь конечное число коэффициентов отлично от нуля. Совокупность всех линейных комбинаций векторов данного множества М является наименьшим подпространством, содержащим М, и наз. линейной оболочкой множества М. Линейная комбинация наз. тривиальной, если все коэффициенты λ α равны нулю. Множество М наз. линейно независимым множеством, если все нетривиальные линейные комбинации векторов из М отличны от нуля.

Любое линейно независимое множество содержится в нек-ром максимальном линейно независимом множестве М 0 , т. е. в таком множестве, к-рое перестает быть линейно независимым после присоединения к нему любого элемента из Е.

Каждый элемент х ∈ Е может быть единственным образом представлен в виде линейной комбинации элементов максимального линейно независимого множества:

х = ∑ α λ α x α , x α ∈ M 0 .

В связи с этим максимальное линейно независимое множество наз. базисом В. п. (алгебраическим базисом). Все базисы данного В. п. имеют одинаковую мощность, к-рая наз. размерностью В. п. Если эта мощность конечна, пространство наз. конечномерным В. п.; в противном случае оно наз. бесконечномерным В. п.

Поле K можно рассматривать как одномерное В. п. над полем K; базис этого В. п. состоит из одного элемента; им может быть любой элемент, отличный от нуля. Конечномерное В. п. с базисом из n элементов наз. n-мерным пространством.

В теории действительных и комплексных В. п. важную роль играет теория выпуклых множеств. Множество М в действительном В. п. наз. выпуклым множеством, если вместе с любыми двумя его точками х, у отрезок tx + (1 - t)y, t ∈ , также принадлежит М.

Большое место в теории В. п. занимает теория линейных функционалов на В. п. n связанная с этим теория двойственности. Пусть Е есть В. п. над полем K. Линейным функционалом на Е наз. аддитивное и однородное отображение f: Е → К:

f(x + y) = f(x) + f(y), f(λx) = λf(x).

Множество Е* всех линейных функционалов на Е образует В. п. над полем K относительно операций

(f 1 + f 2)(x) = f 1 (x) + f 2 (x), (λf)(x) = λf(x), х ∈ Е, Х ∈ К, f 1 , f 2 , f ∈ Е*.

Это В. п. наз. сопряженным (или двойственным) пространством (к Е). С понятием сопряженного пространства связан ряд геометрич. терминов. Пусть D ⊂ E (соответственно Г ⊂ Е*); аннулятором множества D, или ортогональным дополнением множества D (соответственно множества Г) наз. множество

D ⊥ = {f ∈ Е*: f(x) = 0 для всех х ∈ D}

(соответственно Г ⊥ = {х ∈ Е: f(x) = 0 для всех f ∈ Г}); здесь D ⊥ и Г ⊥ - подпространства соответственно пространств Е* и Е. Если f - ненулевой элемент из Е*, то {f} есть максимальное собственное линейное подпространство в Е, наз. иногда гиперподпространством; сдвиг такого подпространства наз. гиперплоскостьюв Е; всякая гиперплоскость имеет вид

{x: f(x) = λ), где f ≠ 0, f ∈ Е*, λ ∈ K.

Если F - подпространство В. п. Е, то существуют естественные изоморфизмы между F* и

E*/F ⊥ и между (E/F)* и F ⊥ .

Подмножество Г ⊂ E* наз. тотальным подмножеством над Е, если его аннулятор содержит лишь нулевой элемент: Г ⊥ = {0}.

Каждому линейно независимому множеству {х α } α∈A ⊂ E можно сопоставить сопряженное множество {f α } α∈A ⊂ E*, т.е. такое множество, что f α (x β) = δ αβ {Кронекера символ) для всех α, β ∈ A. Множество пap {х α , f α } наз. при этом биортогональной системой. Если множество {х α } есть базис в Е, то {f α } тотально над Е.

Значительное место в теории В. п. занимает теория линейных преобразований В. п. Пусть Е 1 , Е 2 - два В. п. над одним и тем же полем К. Линейным отображением, или линейным оператором, Т, отображающим В. п. Е 1 в В. п. Е 2 (или линейным оператором из Е 1 в Е 2), наз. аддитивное и однородное отображение пространства Е 1 в Е 2:

Т(х + у) = Тх + Ту; Т(λх) = λТ(х); х, у ∈ Е 1 .

Частным случаем этого понятия является линейный функционал, или линейный оператор из Е 1 в K. Линейным отображением является, напр., естественное отображение В. п. Е на факторпространство E/F, сопоставляющее каждому элементу х ∈ Е плоское множество F x ∈ E/F. Совокупность ℒ(Е 1 , Е 2) всех линейных операторов Т: Е 1 →Е 2 образует В. п. относительно операций

(Т 1 + Т 2)х = Т 1 х + Т 2 х; (λТ)х = λТх; х ∈ Е 1 ; λ ∈ K; T 1 , T 2 , Т ∈ ℒ(Е 1 , Е 2).

Два В. п. Е 1 и Е 2 наз. изоморфными В. п., если существует линейный оператор («изоморфизм»), осуществляющий взаимно однозначное соответствие между их элементами. Е 1 и Е 2 изоморфны тогда и только тогда, когда их базисы имеют одинаковую мощность.

Пусть Т - линейный оператор, отображающий Е 1 в Е 2 . Сопряженным линейным оператором, или двойственным линейным оператором, по отношению к Т, наз. линейный оператор Т* из E* 2 в Е* 1 , определенный равенством

(Т*φ)х = φ(Тх) для всех х ∈ Е 1 , φ ∈ Е* 2 .

Имеют место соотношения Т* -1 (0) = ⊥ , Т*(Е* 2) = [Т -1 (0)] ⊥ , откуда следует, что Т* является изоморфизмом тогда и только тогда, когда Т является изоморфизмом.

С теорией линейных отображений В. п. тесно связана теория билинейных отображений и полилинейных отображений В. п.

Важную группу задан теории В. п. образуют задачи продолжения линейных отображений. Пусть F - подпространство В. п. Е 1 , Е 2 - линейное пространство над тем же полем, что и Е 1 , и пусть Т 0 - линейное отображение F в Е 2 ; требуется найти продолжение Т отображения T 0 , определенное на всем Е 1 и являющееся линейным отображением Е 1 в Е 2 . Такое продолжение всегда существует, но дополнительные ограничения на функции (связанные с дополнительными структурами в В. п., напр., топологией или отношением порядка) могут сделать задачу неразрешимой. Примерами решения задачи продолжения являются Хана-Банаха теорема и теоремы о продолжении положительных функционалов в пространствах с конусом.

Важным разделом теории В. п. является теория операций над В. п., т. е. способов построения новых В. п. по известным. Примеры таких операций - известные операции взятия подпространства и образования факторпространства по подпространству. Другие важные операции - построение прямой суммы, прямого произведения и тензорного произведения В. п.

Пусть {Е α } α∈I - семейство В. п. над полем К. Множество Е - произведение множеств Е α - можно превратить в В. п. над полем К, введя операции

(x α) + (y α) = (x α + y α); λ(x α) = (λx α); λ ∈ K; x α , y α ∈ E α , α ∈ I;

полученное В. п. Е наз. прямым произведением В. п. Е α и обозначается П α∈I Е α . Подпространство В. п. Е, состоящее из всех тех наборов (х α), для каждого из к-рых множество {α: х α ≠ 0} конечно, наз. прямой суммой В. п. Е α и обозначается Σ α E α или Σ α + E α ; Для конечного числа слагаемых эти определения совпадают; в этом случае используются обозначения:

Пусть Е 1 , Е 2 - два В. п. над полем K; Е" 1 , Е" 2 -тотальные подпространства В. п. E* 1 , Е* 2 , и Е 1 □ Е 2 -В. п., имеющее своим базисом совокупность всех элементов пространства Е 1 × Е 2 . Каждому элементу x □ y ∈ E 1 □ E 2 сопоставляется билинейная функция b = Т(х, у) на Е" 1 × Е 2 по формуле b(f, g) = f(x)g(y), f ∈ E" 1 , g ∈ E" 2 . Это отображение базисных векторов x □ y ∈ E 1 □ E 2 можно продолжить до линейного отображения Т В. п. Е 1 □ Е 2 в В. п. всех билинейных функционалов на Е" 1 × Е" 2 . Пусть E 0 = T -1 (0). Тензорным произведением В. п. Е 1 и Е 2 наз. факторпространство Е 1 ○ Е 2 = (E 1 □ E 2)/E 0 ; образ элемента x □ y обозначается х ○ у. В. п. Е 1 ○ Е 2 изоморфно В. п. билинейных функционалов на Е 1 × Е 2 (см. Тензорное произведение векторных пространств).

Лит.: Бурбаки Н., Алгебра. Алгебраические структуры. Линейная и полилинейная алгебра, пер. с франц., М., 1962; Райков Д. А., Векторные пространства, М., 1962; Дэй М. М., Нормированные линейные пространства, пер. с англ., М., 1961; , Эдварде Р., Функциональный анализ, пер. с англ., М., 1969; Халмош П., Конечномерные векторные пространства, пер. с англ., М., 1963; Глазман И. М., Любич Ю. И., Конечномерный линейный анализ в задачах, М., 1969.

М. И. Кадец.


Источники:

  1. Математическая Энциклопедия. Т. 1 (А - Г). Ред. коллегия: И. М. Виноградов (глав ред) [и др.] - М., «Советская Энциклопедия», 1977, 1152 стб. с илл.

Пусть Р – поле. Элементы a, b, ... ÎР будем называть скалярами .

Определение 1. Класс V объектов (элементов) , , , ... произвольной природы называется векторным пространством над полем Р , а элементы класса V называются векторами , если V замкнуто относительно операции «+» и операции умножения на скаляры из Р (т.е. для любых , ÎV +ÎV ;"aÎ Р aÎV), и выполняются следующие условия:

А 1: алгебра - абелева группа;

А 2: для любых a, bÎР, для любого ÎV выполняется a(b)=(ab)- обобщенный ассоциативный закон;

А 3: для любых a, bÎР, для любого ÎV выполняется (a+b)= a+ b;

А 4: для любого a из Р, для любых , из V выполняется a(+)=a+a(обобщённые дистрибутивные законы);

А 5: для любого из V выполняется 1 = , где 1 – единица поля Р - свойство унитарности.

Элементы поля Р будем называть скалярами, а элементы множества V - векторами.

Замечание. Умножение вектора на скаляр не является бинарной операцией на множестве V, так как это отображение P´V®V.

Рассмотрим примеры векторных пространств.

Пример 1. Нулевое (нуль-мерное) векторное пространство - пространство V 0 ={} - состоящее из одного нуль-вектора.

И для любого aÎР a=. Проверим выполнимость аксиом векторного пространства.

Заметим, что нулевое векторное пространство существенно зависит от поля Р. Так, нульмерные пространства над полем рациональных чисел и над полем действительных чисел считаются различными, хоть и состоят из единственного нуль-вектора.

Пример 2. Поле Р само является векторным пространством над полем Р. Пусть V=P. Проверим выполнимость аксиом векторного пространства. Так как Р - поле, то Р является аддитивной абелевой группой и А 1 выполняется. В силу выполнимости в Р ассоциативности умножения выполняется А 2 . Аксиомы А 3 и А 4 выполняются в силу выполнимости в Р дистрибутивности умножения относительно сложения. Так как в поле Р существует единичный элемент 1, то выполняется свойство унитарности А 5 . Таким образом, поле Р является векторным пространством над полем Р.

Пример 3. Арифметическое n-мерное векторное пространство.

Пусть Р - поле. Рассмотрим множество V= P n ={(a 1 , a 2 , … , a n) ½ a i Î P, i=1,…, n}. Введём на множестве V операции сложения векторов и умножения вектора на скаляр по следующим правилам:

"= (a 1 , a 2 , … , a n), = (b 1 , b 2 , … , b n) Î V, "aÎ P += (a 1 + b 1 , a 2 + b 2 , … , a n + b n) (1)

a=(aa 1 , aa 2 , … , aa n) (2)

Элементы множества V будем называть n-мерными векторами . Два n-мерных вектора называются равными, если их соответствующие компоненты (координаты) равны. Покажем, что V является векторным пространством над полем Р. Из определения операций сложения векторов и умножения вектора на скаляр следует, что V замкнуто относительно этих операций. Так как сложение элементов из V сводится к сложению элементов поля Р, а Р является аддитивной абелевой группой, то и V является аддитивной абелевой группой. Причём, = , где 0 - ноль поля Р, -= (-a 1 , -a 2 , … , -a n). Таким образом, А 1 выполняется. Так как умножение элемента из V на элемент из Р сводится к умножению элементов поля Р, то:


А 2 выполняется в силу ассоциативности умножения на Р;

А 3 и А 4 выполняются в силу дистрибутивности умножения относительно сложения на Р;

А 5 выполняется, так как 1 Î Р - нейтральный элемент относительно умножения на Р.

Определение 2. Множество V= P n с операциями, определёнными формулами (1) и (2) называется арифметическим n-мерным векторным пространством над полем Р.

Ве́кторное (или лине́йное ) простра́нство - математическая структура, которая представляет собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число - скаляр.

1) X+y=y+x (коммутативность сложения )

2) X+(y+Z)=(x+Y)+z (ассоциативность сложения )

3) существует такой элемент 0єV , что x+0=x

4) для любого x єV существует такой элемент - x єV , что x+(-x)=0? называемый вектором,противоположным вектору x.

5) α(βx)= (αβ)x (ассоциативность умножения на скаляр )

7) (α+β)x=αx+βx

8) α(x+y)=αx+αy

1) Свободные вектора в пространстве R 3

2) Матрицы размерности nxm

3) Множество всех многочленов, степень которых не превышает n

4) Примерами линейного пространства является:

5) - пространство действительных чисел.

6) - множество геометрических векторов на плоскости.

7) - пространство матриц фиксированной размерности.

8) - пространство решений однородных линейных систем и др.

Основные определения

N-мерным вектором называется последовательность n чисел. Эти числа называются координатами вектора. Число координат вектора n называется размерностью вектора.

Складывать можно лишь векторы одинаковой размерности

Векторы равны , если они имеют одинаковую размерность и их соответствующие координаты равны.

Любой n-мерный вектор А можно умножить на любое число λ, при этом все его координаты умножаются на это число:
λA=(λ*a1, λ*a2,..., λ*an)

Два вектора одинаковой размерности можно сложить, при этом их соответствующие координаты складываются:

Что называется линейной комбинацией векторов?



Линейной комбинацией векторов a1,a2,…,an называется выражение вида:

Где a1,a2,…,an - произвольные числа

Какие векторы называются линейно зависимыми (независимыми)?

Ненулевые векторы a1,a2,…,an называются линейно зависимыми , если нетривиальная линейная комбинация этих векторов равна нулевому вектору:

Ненулевые векторы a1,a2,…,an называются линейно независимыми , если только тривиальная линейная комбинация этих векторов равна нулевому вектору.

Примеры линейно независимых векторов

Как решается вопрос о линейной зависимости векторов?

Теорема 1 . Для того, чтобы система векторов была линейно зависимой, необходимо и достаточно, чтобы хотя бы один из них был представлен в виде линейной комбинации остальных.

Теорема 2. В n-мерном пространстве любая система, содержащая более чем n векторов, является линейно зависимой.

Теорема 3 .Если определитель, составленный из координат векторов, отличен от нуля, то система векторов линейно независима. Если указанные теоремы не дают ответа на вопрос о линейной зависимости или независимости векторов, то необходимо решать систему уравнений относительно , либо определять ранг системы векторов.

В каком соотношении находятся координаты двух линейно зависимых векторов?

Приведите пример двух линейно зависимых векторов

: Векторы и коллинеарны когда существует такое число , что имеет место равенство:
.

Определение базиса линейного пространства

Совокупность из n линейно независимых элементов в пространстве размерности n называется базисом этого пространства.

Определение размерности линейного пространства.

Определение 3.1. Линейное пространство R называется n-мерным, если в нем существует n линейно независимых элементов, а любые (n +1) элементов уже являются линейно зависимыми. При этом число n называется размерностью пространства R .

Размерность пространства обозначают символом dim.

Определение 3.2. Линейное пространство R называется бесконечномерным, если в нем существует любое число линейно независимых элементов.

Теорема 3.4. Пусть линейное пространство R имеет базис, состоящий из n элементов. Тогда размерность R равна n (dim R=n ).

Понятие n-мерного пространства

Линейное пространство V называется n-мерным пространством, если в нем существует система из n линейно независимых элементов, а любой n+1 эл-в линейно зависимы.

Формулы, связывающие векторы старого и нового базисов

В статье о n -мерных векторах мы пришли к понятию линейного пространства, порождаемого множеством n -мерных векторов. Теперь нам предстоит рассмотреть не менее важные понятия, такие как размерность и базис векторного пространства. Они напрямую связаны с понятием линейно независимой системы векторов, так что дополнительно рекомендуется напомнить себе основы и этой темы.

Введем некоторые определения.

Определение 1

Размерность векторного пространства – число, соответствующее максимальному количеству линейно независимых векторов в этом пространстве.

Определение 2

Базис векторного пространства – совокупность линейно независимых векторов, упорядоченная и в своей численности равная размерности пространства.

Рассмотрим некое пространство n -векторов. Размерность его соответственно равна n . Возьмем систему из n -единичных векторов:

e (1) = (1 , 0 , . . . , 0) e (2) = (0 , 1 , . . . , 0) e (n) = (0 , 0 , . . . , 1)

Используем эти векторы в качестве составляющих матрицы A: она будет являться единичной с размерностью n на n . Ранг этой матрицы равен n . Следовательно, векторная система e (1) , e (2) , . . . , e (n) является линейно независимой. При этом к системе невозможно добавить ни одного вектора, не нарушив ее линейной независимости.

Так как число векторов в системе равно n , то размерность пространства n -мерных векторов равна n , а единичные векторы e (1) , e (2) , . . . , e (n) являются базисом указанного пространства.

Из полученного определения сделаем вывод: любая система n -мерных векторов, в которой число векторов меньше n , не является базисом пространства.

Если мы поменяем местами первый и второй вектор, получим систему векторов e (2) , e (1) , . . . , e (n) . Она также будет являться базисом n -мерного векторного пространства. Составим матрицу, взяв за ее строки векторы полученной системы. Матрица может быть получена из единичной матрицы перестановкой местами первых двух строк, ранг ее будет равен n . Система e (2) , e (1) , . . . , e (n) линейно независима и является базисом n -мерного векторного пространства.

Переставив местами в исходной системе другие векторы, получим еще один базис.

Мы можем взять линейно независимую систему неединичных векторов, и она также будет представлять собой базис n -мерного векторного пространства.

Определение 3

Векторное пространство с размерностью n имеет столько базисов, сколько существует линейно независимых систем из n -мерных векторов числом n.

Плоскость является двумерным пространством – ее базисом будут два любых неколлинеарных вектора. Базисом трехмерного пространства послужат три любых некомпланарных вектора.

Рассмотрим применение данной теории на конкретных примерах.

Пример 1

Исходные данные: векторы

a = (3 , - 2 , 1) b = (2 , 1 , 2) c = (3 , - 1 , - 2)

Необходимо определить, являются ли указанные векторы базисом трехмерного векторного пространства.

Решение

Для решения поставленной задачи исследуем заданную систему векторов на линейную зависимость. Составим матрицу, где строки – координаты векторов. Определим ранг матрицы.

A = 3 2 3 - 2 1 - 1 1 2 - 2 A = 3 - 2 1 2 1 2 3 - 1 - 2 = 3 · 1 · (- 2) + (- 2) · 2 · 3 + 1 · 2 · (- 1) - 1 · 1 · 3 - (- 2) · 2 · (- 2) - 3 · 2 · (- 1) = = - 25 ≠ 0 ⇒ R a n k (A) = 3

Следовательно, заданные условием задачи векторы линейно независимы, и их численность равна размерности векторного пространства – они являются базисом векторного пространства.

Ответ: указанные векторы являются базисом векторного пространства.

Пример 2

Исходные данные: векторы

a = (3 , - 2 , 1) b = (2 , 1 , 2) c = (3 , - 1 , - 2) d = (0 , 1 , 2)

Необходимо определить, может ли указанная система векторов являться базисом трехмерного пространства.

Решение

Указанная в условии задачи система векторов является линейно зависимой, т.к. максимальное число линейно независимых векторов равно 3. Таким образом, указанная система векторов не может служить базисом трехмерного векторного пространства. Но стоит отметить, что подсистема исходной системы a = (3 , - 2 , 1) , b = (2 , 1 , 2) , c = (3 , - 1 , - 2) является базисом.

Ответ: указанная система векторов не является базисом.

Пример 3

Исходные данные: векторы

a = (1 , 2 , 3 , 3) b = (2 , 5 , 6 , 8) c = (1 , 3 , 2 , 4) d = (2 , 5 , 4 , 7)

Могут ли они являться базисом четырехмерного пространства?

Решение

Cоставим матрицу, используя в качестве строк координаты заданных векторов

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

По методу Гаусса определим ранг матрицы:

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7 ~ 1 2 3 3 0 1 0 2 0 1 - 1 1 0 1 - 2 1 ~ ~ 1 2 3 3 0 1 0 2 0 0 - 1 - 1 0 0 - 2 - 1 ~ 1 2 3 3 0 1 0 2 0 0 - 1 - 1 0 0 0 1 ⇒ ⇒ R a n k (A) = 4

Следовательно, система заданных векторов линейно независима и их численность равна размерности векторного пространства – они являются базисом четырехмерного векторного пространства.

Ответ: заданные векторы являются базисом четырехмерного пространства.

Пример 4

Исходные данные: векторы

a (1) = (1 , 2 , - 1 , - 2) a (2) = (0 , 2 , 1 , - 3) a (3) = (1 , 0 , 0 , 5)

Составляют ли они базис пространства размерностью 4?

Решение

Исходная система векторов линейно независима, но численность векторов в ней недостаточна, чтобы стать базисом четырехмерного пространства.

Ответ: нет, не составляют.

Разложение вектора по базису

Примем, что произвольные векторы e (1) , e (2) , . . . , e (n) являются базисом векторного n-мерного пространства. Добавим к ним некий n -мерный вектор x → : полученная система векторов станет линейно зависимой. Свойства линейной зависимости гласят, что хотя бы один из векторов такой системы может линейно выражаться через остальные. Переформулируя это утверждение, можно говорить о том, что хотя бы один из векторов линейно зависимой системы может раскладываться по остальным векторам.

Таким образом, мы пришли к формулировке важнейшей теоремы:

Определение 4

Любой вектор n -мерного векторного пространства единственным образом раскладывается по базису.

Доказательство 1

Докажем эту теорему:

зададим базис n -мерного векторного пространства - e (1) , e (2) , . . . , e (n) . Сделаем систему линейно зависимой, добавив к ней n -мерный вектор x → . Этот вектор может быть линейно выражен через исходные векторы e:

x = x 1 · e (1) + x 2 · e (2) + . . . + x n · e (n) , где x 1 , x 2 , . . . , x n - некоторые числа.

Теперь докажем, что такое разложение является единственным. Предположим, что это не так и существует еще одно подобное разложение:

x = x ~ 1 e (1) + x 2 ~ e (2) + . . . + x ~ n e (n) , где x ~ 1 , x ~ 2 , . . . , x ~ n - некие числа.

Отнимем от левой и правой частей этого равенства соответственно левую и правую части равенства x = x 1 · e (1) + x 2 · e (2) + . . . + x n · e (n) . Получим:

0 = (x ~ 1 - x 1) · e (1) + (x ~ 2 - x 2) · e (2) + . . . (x ~ n - x n) · e (2)

Система базисных векторов e (1) , e (2) , . . . , e (n) линейно независима; по определению линейной независимости системы векторов равенство выше возможно только тогда, когда все коэффициенты (x ~ 1 - x 1) , (x ~ 2 - x 2) , . . . , (x ~ n - x n) будут равны нулю. Из чего справедливым будет: x 1 = x ~ 1 , x 2 = x ~ 2 , . . . , x n = x ~ n . И это доказывает единственный вариант разложения вектора по базису.

При этом коэффициенты x 1 , x 2 , . . . , x n называются координатами вектора x → в базисе e (1) , e (2) , . . . , e (n) .

Доказанная теория делает понятным выражение «задан n -мерный вектор x = (x 1 , x 2 , . . . , x n) »: рассматривается вектор x → n -мерного векторного пространства, и его координаты заданы в некотором базисе. При этом также понятно, что этот же вектор в другом базисе n -мерного пространства будет иметь другие координаты.

Рассмотрим следующий пример: допустим, что в некотором базисе n -мерного векторного пространства задана система из n линейно независимых векторов

а также задан вектор x = (x 1 , x 2 , . . . , x n) .

Векторы e 1 (1) , e 2 (2) , . . . , e n (n) в этом случае также являются базисом этого векторного пространства.

Предположим, что необходимо определить координаты вектора x → в базисе e 1 (1) , e 2 (2) , . . . , e n (n) , обозначаемые как x ~ 1 , x ~ 2 , . . . , x ~ n .

Вектор x → будет представлен следующим образом:

x = x ~ 1 · e (1) + x ~ 2 · e (2) + . . . + x ~ n · e (n)

Запишем это выражение в координатной форме:

(x 1 , x 2 , . . . , x n) = x ~ 1 · (e (1) 1 , e (1) 2 , . . . , e (1) n) + x ~ 2 · (e (2) 1 , e (2) 2 , . . . , e (2) n) + . . . + + x ~ n · (e (n) 1 , e (n) 2 , . . . , e (n) n) = = (x ~ 1 e 1 (1) + x ~ 2 e 1 (2) + . . . + x ~ n e 1 (n) , x ~ 1 e 2 (1) + x ~ 2 e 2 (2) + + . . . + x ~ n e 2 (n) , . . . , x ~ 1 e n (1) + x ~ 2 e n (2) + . . . + x ~ n e n (n))

Полученное равенство равносильно системе из n линейных алгебраических выражений с n неизвестными линейными переменными x ~ 1 , x ~ 2 , . . . , x ~ n:

x 1 = x ~ 1 e 1 1 + x ~ 2 e 1 2 + . . . + x ~ n e 1 n x 2 = x ~ 1 e 2 1 + x ~ 2 e 2 2 + . . . + x ~ n e 2 n ⋮ x n = x ~ 1 e n 1 + x ~ 2 e n 2 + . . . + x ~ n e n n

Матрица этой системы будет иметь следующий вид:

e 1 (1) e 1 (2) ⋯ e 1 (n) e 2 (1) e 2 (2) ⋯ e 2 (n) ⋮ ⋮ ⋮ ⋮ e n (1) e n (2) ⋯ e n (n)

Пусть это будет матрица A , и ее столбцы – векторы линейно независимой системы векторов e 1 (1) , e 2 (2) , . . . , e n (n) . Ранг матрицы – n , и ее определитель отличен от нуля. Это свидетельствует о том, что система уравнений имеет единственное решение, определяемое любым удобным способом: к примеру, методом Крамера или матричным методом. Таким образом мы сможем определить координаты x ~ 1 , x ~ 2 , . . . , x ~ n вектора x → в базисе e 1 (1) , e 2 (2) , . . . , e n (n) .

Применим рассмотренную теорию на конкретном примере.

Пример 6

Исходные данные: в базисе трехмерного пространства заданы векторы

e (1) = (1 , - 1 , 1) e (2) = (3 , 2 , - 5) e (3) = (2 , 1 , - 3) x = (6 , 2 , - 7)

Необходимо подтвердить факт, что система векторов e (1) , e (2) , e (3) также служит базисом заданного пространства, а также определить координаты вектора х в заданном базисе.

Решение

Система векторов e (1) , e (2) , e (3) будет являться базисом трехмерного пространства, если она линейно независима. Выясним эту возможность, определив ранг матрицы A , строки которой – заданные векторы e (1) , e (2) , e (3) .

Используем метод Гаусса:

A = 1 - 1 1 3 2 - 5 2 1 - 3 ~ 1 - 1 1 0 5 - 8 0 3 - 5 ~ 1 - 1 1 0 5 - 8 0 0 - 1 5

R a n k (A) = 3 . Таким образом, система векторов e (1) , e (2) , e (3) линейно независима и является базисом.

Пусть в базисе вектор x → имеет координаты x ~ 1 , x ~ 2 , x ~ 3 . Связь этих координат определяется уравнением:

x 1 = x ~ 1 e 1 (1) + x ~ 2 e 1 (2) + x ~ 3 e 1 (3) x 2 = x ~ 1 e 2 (1) + x ~ 2 e 2 (2) + x ~ 3 e 2 (3) x 3 = x ~ 1 e 3 (1) + x ~ 2 e 3 (2) + x ~ 3 e 3 (3)

Применим значения согласно условиям задачи:

x ~ 1 + 3 x ~ 2 + 2 x ~ 3 = 6 - x ~ 1 + 2 x ~ 2 + x ~ 3 = 2 x ~ 1 - 5 x ~ 2 - 3 x 3 = - 7

Решим систему уравнений методом Крамера:

∆ = 1 3 2 - 1 2 1 1 - 5 - 3 = - 1 ∆ x ~ 1 = 6 3 2 2 2 1 - 7 - 5 - 3 = - 1 , x ~ 1 = ∆ x ~ 1 ∆ = - 1 - 1 = 1 ∆ x ~ 2 = 1 6 2 - 1 2 1 1 - 7 - 3 = - 1 , x ~ 2 = ∆ x ~ 2 ∆ = - 1 - 1 = 1 ∆ x ~ 3 = 1 3 6 - 1 2 2 1 - 5 - 7 = - 1 , x ~ 3 = ∆ x ~ 3 ∆ = - 1 - 1 = 1

Так, вектор x → в базисе e (1) , e (2) , e (3) имеет координаты x ~ 1 = 1 , x ~ 2 = 1 , x ~ 3 = 1 .

Ответ: x = (1 , 1 , 1)

Связь между базисами

Предположим, что в некотором базисе n-мерного векторного пространства даны две линейно независимые системы векторов:

c (1) = (c 1 (1) , c 2 (1) , . . . , c n (1)) c (2) = (c 1 (2) , c 2 (2) , . . . , c n (2)) ⋮ c (n) = (c 1 (n) , e 2 (n) , . . . , c n (n))

e (1) = (e 1 (1) , e 2 (1) , . . . , e n (1)) e (2) = (e 1 (2) , e 2 (2) , . . . , e n (2)) ⋮ e (n) = (e 1 (n) , e 2 (n) , . . . , e n (n))

Указанные системы являются также базисами заданного пространства.

Пусть c ~ 1 (1) , c ~ 2 (1) , . . . , c ~ n (1) - координаты вектора c (1) в базисе e (1) , e (2) , . . . , e (3) , тогда связь координат будет задаваться системой линейных уравнений:

с 1 (1) = c ~ 1 (1) e 1 (1) + c ~ 2 (1) e 1 (2) + . . . + c ~ n (1) e 1 (n) с 2 (1) = c ~ 1 (1) e 2 (1) + c ~ 2 (1) e 2 (2) + . . . + c ~ n (1) e 2 (n) ⋮ с n (1) = c ~ 1 (1) e n (1) + c ~ 2 (1) e n (2) + . . . + c ~ n (1) e n (n)

В виде матрицы систему можно отобразить так:

(c 1 (1) , c 2 (1) , . . . , c n (1)) = (c ~ 1 (1) , c ~ 2 (1) , . . . , c ~ n (1)) · e 1 (1) e 2 (1) … e n (1) e 1 (2) e 2 (2) … e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) … e n (n)

Сделаем по аналогии такую же запись для вектора c (2) :

(c 1 (2) , c 2 (2) , . . . , c n (2)) = (c ~ 1 (2) , c ~ 2 (2) , . . . , c ~ n (2)) · e 1 (1) e 2 (1) … e n (1) e 1 (2) e 2 (2) … e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) … e n (n)

(c 1 (n) , c 2 (n) , . . . , c n (n)) = (c ~ 1 (n) , c ~ 2 (n) , . . . , c ~ n (n)) · e 1 (1) e 2 (1) … e n (1) e 1 (2) e 2 (2) … e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) … e n (n)

Матричные равенства объединим в одно выражение:

c 1 (1) c 2 (1) ⋯ c n (1) c 1 (2) c 2 (2) ⋯ c n (2) ⋮ ⋮ ⋮ ⋮ c 1 (n) c 2 (n) ⋯ c n (n) = c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) · e 1 (1) e 2 (1) ⋯ e n (1) e 1 (2) e 2 (2) ⋯ e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) ⋯ e n (n)

Оно и будет определять связь векторов двух различных базисов.

Используя тот же принцип, возможно выразить все векторы базиса e (1) , e (2) , . . . , e (3) через базис c (1) , c (2) , . . . , c (n) :

e 1 (1) e 2 (1) ⋯ e n (1) e 1 (2) e 2 (2) ⋯ e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) ⋯ e n (n) = e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) · c 1 (1) c 2 (1) ⋯ c n (1) c 1 (2) c 2 (2) ⋯ c n (2) ⋮ ⋮ ⋮ ⋮ c 1 (n) c 2 (n) ⋯ c n (n)

Дадим следующие определения:

Определение 5

Матрица c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) является матрицей перехода от базиса e (1) , e (2) , . . . , e (3)

к базису c (1) , c (2) , . . . , c (n) .

Определение 6

Матрица e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) является матрицей перехода от базиса c (1) , c (2) , . . . , c (n)

к базису e (1) , e (2) , . . . , e (3) .

Из этих равенств очевидно, что

c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) · e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) = 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) · c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) = 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1

т.е. матрицы перехода взаимообратны.

Рассмотрим теорию на конкретном примере.

Пример 7

Исходные данные: необходимо найти матрицу перехода от базиса

c (1) = (1 , 2 , 1) c (2) = (2 , 3 , 3) c (3) = (3 , 7 , 1)

e (1) = (3 , 1 , 4) e (2) = (5 , 2 , 1) e (3) = (1 , 1 , - 6)

Также нужно указать связь координат произвольного вектора x → в заданных базисах.

Решение

1. Пусть T – матрица перехода, тогда верным будет равенство:

3 1 4 5 2 1 1 1 1 = T · 1 2 1 2 3 3 3 7 1

Умножим обе части равенства на

1 2 1 2 3 3 3 7 1 - 1

и получим:

T = 3 1 4 5 2 1 1 1 - 6 · 1 2 1 2 3 3 3 7 1 - 1

2. Определим матрицу перехода:

T = 3 1 4 5 2 1 1 1 - 6 · 1 2 1 2 3 3 3 7 1 - 1 = = 3 1 4 5 2 1 1 1 - 6 · - 18 5 3 7 - 2 - 1 5 - 1 - 1 = - 27 9 4 - 71 20 12 - 41 9 8

3. Определим связь координат вектора x → :

допустим, что в базисе c (1) , c (2) , . . . , c (n) вектор x → имеет координаты x 1 , x 2 , x 3 , тогда:

x = (x 1 , x 2 , x 3) · 1 2 1 2 3 3 3 7 1 ,

а в базисе e (1) , e (2) , . . . , e (3) имеет координаты x ~ 1 , x ~ 2 , x ~ 3 , тогда:

x = (x ~ 1 , x ~ 2 , x ~ 3) · 3 1 4 5 2 1 1 1 - 6

Т.к. равны левые части этих равенств, мы можем приравнять и правые:

(x 1 , x 2 , x 3) · 1 2 1 2 3 3 3 7 1 = (x ~ 1 , x ~ 2 , x ~ 3) · 3 1 4 5 2 1 1 1 - 6

Умножим обе части справа на

1 2 1 2 3 3 3 7 1 - 1

и получим:

(x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · 3 1 4 5 2 1 1 1 - 6 · 1 2 1 2 3 3 3 7 1 - 1 ⇔ ⇔ (x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · T ⇔ ⇔ (x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · - 27 9 4 - 71 20 12 - 41 9 8

С другой стороны

(x ~ 1 , x ~ 2 , x ~ 3) = (x 1 , x 2 , x 3) · - 27 9 4 - 71 20 12 - 41 9 8

Последние равенства показывают связь координат вектора x → в обоих базисах.

Ответ: матрица перехода

27 9 4 - 71 20 12 - 41 9 8

Координаты вектора x → в заданных базисах связаны соотношением:

(x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · - 27 9 4 - 71 20 12 - 41 9 8

(x ~ 1 , x ~ 2 , x ~ 3) = (x 1 , x 2 , x 3) · - 27 9 4 - 71 20 12 - 41 9 8 - 1

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Пусть V - непустое множество, элементы которого мы назовём векторами и будем обозначать …и т.д. Пусть на Vзаданы и определеным каким-либо образом две операции. Первая операция - бинарная аддитивная операция (или грубо говоря - операция сложения). Эту операцию обозначим знаком +, (впрочем, необязательно, чтобы на все 100% эта операция определялась так, как определяется операция сложения для обычных чисел, мы ведь не числа сейчас изучаем, а векторы, поэтому эту операцию сложения векторов можно обозначить и каким-то своим, особым знаком, например так: (). Вторая операция - умножение вектора на какой-нибудь элемент? такого множества, которое является полем, в результате которой получается новый вектор (). Элементы поля называют ещё скалярами. (Кому лень смотреть, что такое поле, скажу что примерами алгебраических полей могут служить множество действительных или также комплексных чисел). (4)

Итак, сформулируем аксиомы векторного пространства. (3)

1. a) сумма любых двух элементов из V и б) произведение скаляра и произвольного элемента из V являются некоторыми элементами из V (векторами).

2. сложение любых трёх элементов из V подчиняется сочетательному закону (или как ещё говорят - векторное сложение ассоциативно):

3. сложение любых двух элементов из V подчиняется переместительному закону (векторное сложение коммутативно): .

4. существует такой элемент из V (нулевой вектор), что для любого.

5. для любого элемента из V существует такой элемент из V, сумма которого с исходным элементом равна, т.е. (.

Для любых скаляров (чисел) ? и? и для любых двух векторов из V

Векторное подпространство

Векторным подпространством, или просто подпространством, векторное пространство Е нал полем К называется множество, замкнутое относительно действий сложения и умножения на скаляр. Подпространство, рассматриваемое отдельно от вмещающего его пространства, есть векторное пространство над тем же полем. (5)

Прямой линией, проходящей через две точки x и y векторного пространства Е, называется множество элементов вида, ??. Множество G называется плоским множеством, если вместе с любыми двумя оно содержит прямую, проходящую через эти точки. Каждое плоское множество получается из некоторого подпространства с помощью сдвига (параллельного переноса): G=x+F, это означает, что каждый элемент z представим единственным образом в виде y , причем при этом равенство осуществляет взаимно однозначное соответствие между F и G.

Совокупность всех сдвигов данного подпространства F образует векторное пространство над K, называется факторпространством E/F, если определитель операции следующим образом:

Пусть М = - произвольное множество векторов Е; линейной комбинацией векторов называется вектор x, определенный формулой

в которой лишь конечное число коэффициентов отлично от нуля. Совокупность всех линейных комбинаций векторов данного множества М является наименьшим подпространством, содержащим М, и называющийся линейной оболочкой множества М. Линейная комбинация называется тривиальной, если все коэффициенты равны нулю. Множество М называется линейно зависимым множеством, если все нетривиальные линейные комбинации векторов из М отличны от нуля.

В теории действительных и комплексных векторных пространств важную роль играет теория выпуклых множеств. Множество М в действительном векторном пространстве называется выпуклым множеством, если вместе с любыми двумя его точками x, y отрезок также принадлежит М.

Большое место в теории векторных пространств занимает теория линейных функционалов на векторное пространство и связанная с этим теория двойственности. Пусть Е есть векторное пространство над полем К. Линейным функционалом на Е называется аддитивное и однородное отображение усть Е есть векторное пространство над полем К. Линейным функционалом на Е называется аддитивное и однородное отображение

Множество всех линейных функционалов на Е образует векторное пространство над полем К относительно операций

Это векторное пространство называется сопряженным (или двойственным) пространством (к Е). С понятием сопряженного пространства связан ряд геометрических терминов. Пусть D?E (соответственно множество Г) называется множество

(соответственно); здесь и - подпространства соответственно пространств и Е. Если f - ненулевой элемент, то {f } есть максимальное собственное линейное подпространство в Е, называется иногда гиперподпространством; сдвиг такого подпространства называется гиперплоскостью в Е; всякая гиперплоскость имеет вид

{x: f(x)= ??}, где f ? 0, f , К.

Подмножество называется тотальным подмножеством над Е, если его аннулятор содержит лишь нулевой элемент ={0}.

Каждому линейно независимому множеству можно сопоставить сопряженное подмножество, т.е. такое множество, что (Кронекера символ) для всех. Множество пар называется при этом биорторгональной системой. Если множество есть базис в Е, то тотально над Е.

Значительное место в теории векторных пространств занимает теория линейных преобразований векторного пространства. Пусть - два векторных пространства над одним и тем же полем К. Линейным отображением, или линейным оператором, Т, отображающим векторное пространство в векторном пространстве (или линейным оператором из в.

Два векторных пространства и называются изоморфными векторными пространствами, если существует линейный оператор («изоморфизм»), осуществляющий взаимно однозначное соответствие между их элементами и.

С теорией линейных отображений векторного пространства тесно связана теория билинейных отображений и полилинейных отображений векторного пространства.

Важную группу задач теории векторного пространства образуют задачи продолжения линейных отображений. Пусть F - подпространство векторного пространства - линейное пространство над тем же полем, что и, и пусть - линейное отображение F в; требуется найти продолжение Т отображения, определенное на всем и являющееся линейным отображением в. Такое продолжение всегда существует, но дополнительные ограничения на функции (связанные с дополнительными структурами в векторное пространство, например, топологией или отношением порядка) могут сделать задачу неразрешимой. Примерами решения задачи продолжения являются Хана-Банаха теорема и теоремы о продолжении положительных функционалов в пространствах с конусом.

Важным разделом теории Векторных пространств является теория операция над векторными пространствами, т.е. способов построения новых векторных пространств по известным. Примеры таких операций - известные операции взятия подпространства и образования факторпространства по подпространству. Другие важные операции - построение прямой суммы, прямого произведения и тензорного произведения векторного пространства.